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Abstract

We present a new approach to distributed problem solv-
ing based on high-level program execution. While this tech-
nique has proven itself for single-agent systems based on the
Golog language, several challenges are encountered when
moving to a multi-agent setting. Key to our approach is a
better representation of the dynamics of multi-agent teams
by means of the following features: a robust combination
of true concurrency of actions with the interleaved con-
currency of ConGolog; an explicit notion of time to assist
coordination; and semantic support for predictable exoge-
nous actions (also called “natural actions”). The result is
MIndiGolog, a new Golog variant suitable for distributed,
cooperative execution by a multi-agent team.

1. Introduction

In distributed problem solving applications, a team of
agents must cooperate closely to achieve a shared goal.
Such teams can often be conceptualized as a single agent
with distributed sensing, reasoning and acting capabilities,
which leads to a two-stage technique for programming such
teams: adapt a formalism from single-agent programming
to specify the tasks to be performed, then provide a coor-
dination strategy allowing the team to execute the specifi-
cation cooperatively. This approach has been successfully
employed by platforms such as STEAM [17], SharedPlans
[8], and TAEMS [5], which specify tasks with variants of
the Hierarchical Task Networks (HTN) formalism.

While HTN is a popular and powerful approach to task
specification, an increasingly popular alternative is high-
level program execution as embodied by the Golog pro-
gramming language [11]. By “high-level program” is meant
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a program whose primitive components are domain-specific
actions, connected by standard programming constructs,
and that may contain nondeterministic operators. The pri-
mary advantage of this approach is controlled nondetermin-
ism, allowing some program parts to be fully specified while
others may involve arbitrary amounts of nondeterminism,
or even goal-based planning. Compared to standard HTN,
Golog provides a more natural representation of many tasks
and is based on a more sophisticated logic of action [2].
Extensions to Golog have introduced further advantageous
features such as concurrent execution by interleaving of ac-
tions (ConGolog [3]) and a combination of online execution
with offline planning (IndiGolog [4]).

Motivated by these advantages, our research program
aims to build a distributed problem solving system based on
cooperative execution of shared high-level programs. This
paper represents a first step towards that goal. We integrate
several existing extensions to the situation calculus into the
Golog language to better represent the dynamics of a multi-
agent team. Key among these is true concurrency of ac-
tions, which we combine with the interleaved concurrency
of ConGolog to give a flexible account of concurrent execu-
tion. An explicit notion of time is incorporated to enrich the
world model and to assist in coordination between agents.
The concept of natural actions is also tightly integrated into
the language, to allow agents to predict the behavior of their
teammates and environment. We name the resulting lan-
guage “MIndiGolog” for “Multi-Agent IndiGolog”.

The paper proceeds as follows: section 2 gives some
background on the situation calculus and Golog; section
3 develops the semantics of MIndiGolog and shows how
distributed logic programming techniques can facilitate the
shared execution of MIndiGolog programs; section 4 dis-
cusses related work and section 5 concludes with a sum-
mary of our results and ongoing research. The work is moti-
vated and illustrated throughout by examples from a simple
multi-agent domain, in which a team of robotic chefs must
be programmed to cooperatively prepare a meal.



2. Background

2.1. The Situation Calculus

The situation calculus is a first-order logic formalism
for modeling dynamic worlds, with the following key fea-
tures: Actions are functions denoting individual instanta-
neous events that can cause the state of the world to change;
Situations are histories of the actions that have occurred,
with S0 being the initial situation and successive situations
built up using the function do(a, s); Fluents are predicates
or functions representing properties of the world that may
change from one situation to another. The special fluent
Poss(a, s) indicates when it is possible to perform an ac-
tion in a situation. For a detailed description consult [14].

A collection of situation calculus statements D describ-
ing a dynamic world is referred to as a theory of action,
and queries about the behavior or evolution of the world are
posed as logical entailment queries relative to this theory.

Concurrency. In the basic situation calculus only a sin-
gle action can occur at any instant. While suitable for most
single-agent domains, this limitation is emphatically not
suitable for multi-agent systems - several actions can eas-
ily occur simultaneously if performed by different agents.
Modeling this true concurrency is necessary to avoid prob-
lems with conflicting or incompatible actions. There is also
the potential to utilize concurrency to execute tasks more ef-
ficiently. Clearly a solid account of concurrency is required
for programming multi-agent teams.

The work of [12, 16] adds true concurrency to the situa-
tion calculus by replacing action terms with sets of actions
that are performed simultaneously. All functions and predi-
cates that take an action are modified to take sets of actions
instead. For example, do(a, s) becomes do({a1, a2, ...}, s).

This seemingly simple modification introduces a com-
plication - a combination of actions is not guaranteed to be
possible even if each of the individual actions are. For ex-
ample, two agents may not be able to acquire the same re-
source at the same time. This is known as the precondition
interaction problem [13] and is an area of ongoing research.
For our purposes it is addressed by introducing a predicate
Conflicts(c, s) which is true when the actions in c are in
conflict and cannot be performed together.

Time. An explicit notion of time can make coordination
between agents easier, as joint actions may be performed at
a particular time. It also allows a richer description of the
world, for example when stating the baking time of a cake.

The standard approach to time in the situation calculus
is that of [16, 13]. Each action gains an extra argument in-
dicating the time at which is was performed. Time itself
can be represented by any appropriately-behaved sequence,
such as integers or reals, whose axiomatisation must be in-
cluded in the theory of action. The functions time and

start are introduced to give the performance time of an ac-
tion and the start time of a situation respectively. The start
time of the initial situation may be defined arbitrarily.

An additional predicate Coherent is defined to ensure
that the performance time is the same for all members in a
set of concurrent actions. The Poss fluent for concurrent
actions can then be defined to ensure that the temporal rela-
tion between past and future situations is respected, as well
as accounting for conflicting actions1:

Poss(c, s) ≡ ∀a. [a ∈ c → Poss(a, s)]
∧¬Conflicts(c, s)∧ time(c) > start(s)∧Coherent(c)

This representation is accompanied by a standard approach
to actions with a finite duration: they are decomposed into
instantaneous start and end actions and a fluent indicat-
ing that the action is in progress. For example, a long-
running task may be represented by the actions beginTask
and endTask along with a fluent doingTask.

Natural actions. These are a special class of exogenous
actions, those actions which occur outside of an agent’s con-
trol [16]. They are classified according to the following
requirement: natural actions must occur at their predicted
times, provided no earlier actions prevent them from occur-
ring. For example, a timer will ring at the time it was set
for, unless it is switched off. The action endTask from
above is another example - it must occur whenever it is pos-
sible, which is at the time when the agent finishes the task.
In domains where many agents may be simultaneously en-
gaged in many long-running tasks, strong semantic support
for natural actions will therefore be of significant benefit.

Natural actions are indicated by the truth of the predicate
Natural(a). The times at which natural actions may occur
are specified by the Poss predicate as usual. For example,
suppose that the fluent TimerSet(m, s) represents the fact
that a timer is set to ring in m minutes in situation s. The
possibility predicate for the ringT imer(t) action would be:

Poss(ringT imer(t), s) ≡
∃m. [TimerSet(m, s) ∧ t = start(s) + m]

The timer may thus ring only at its predicted time. To en-
force the requirement that natural actions must occur when-
ever possible, a predicate Legal(s) is introduced which is
true only for situations that respect this requirement. Legal
situations are the only situations that could be brought about
in the real world:

Legal(S0) ≡ True

Legal(do(c, s)) ≡ Legal(s) ∧ Poss(c, s)
∧∀a. [Natural(a) ∧ Poss(a, s) → [a ∈ c ∨ t < time(a)]]

1As usual, lower-case terms are variables and free variables are implic-
itly universally quantified



Table 1. Some Golog operators
Operator Meaning

a Execute action a in the world
φ? Proceed if condition φ is true

δ1; δ2 Execute δ1followed by δ2

δ1|δ2 Execute either δ1 or δ2

π(x)δ(x) Nondet. select arguments for δ
δ∗ Execute δ zero or more times

if φ then δ1 else δ2 Exec. δ1 if φ holds, δ2 otherwise
whileφdo δ Execute δ while φ holds

procP (−→x )δ(−→x )end Procedure definition
δ1||δ2 Concurrent execution (ConGolog)
Σδ Plan execution offline (IndiGolog)

An important concept when dealing with natural actions
is the least natural time point (LNTP) of a situation, defined
as the earliest time at which a natural action may occur. We
assume that the theory of action avoids certain pathological
cases, so that absence of an LNTP implies that no natural
actions are possible.

Lntp(s, t) ≡
∃a. [Natural(a) ∧ Poss(a, s) ∧ time(a) = t]∧

∀a. [Natural(a) ∧ Poss(a, s) → t ≤ time(a)]

2.2. Golog

Golog [11] is a declarative agent programming language
based on the situation calculus. Testimony to its success
are its wide range of applications and many extensions to
provide additional functionality ([3, 4, 6]). We use “Golog”
to refer to the family of languages based on this technique,
including ConGolog [3] and IndiGolog [4].

To program an agent using Golog one specifies a situ-
ation calculus theory of action, and a program consisting
of actions from the theory connected by programming con-
structs such as if-then-else, while loops, and nondetermin-
istic choice. Table 1 lists some of the operators available in
various incarnations of the language.

In line with the idea of high-level program execution,
the agent’s control program may be nondeterministic. It is
the task of the agent to plan a deterministic instantiation
of the program, a sequence of actions that can legally be
performed in the world. Such a sequence is called a legal
execution of the Golog program.

Two predicates Trans and Final define the semantics
for each operator. Trans(δ, s, δ′, s′) holds when execut-
ing a step of program δ can cause the world to move from
situation s to situation s′, after which δ′ remains to be ex-
ecuted. It thus characterizes single steps of computation.
Final(δ, s) holds when program δ may legally terminate its

execution in situation s. We base our work on the semantics
of IndiGolog, which builds on ConGolog and is the most
feature-full of the standard Golog variants. The full seman-
tics are available in the references, but as an example con-
sider equation (1), which specifies the concurrent-execution
operator as an interleaving of computation steps. It states
that it is possible to single-step the concurrent execution of
δ1 and δ2 by performing either a step from δ1 or a step from
δ2, with the remainder γ left to execute concurrently with
the other program:

Trans(δ1||δ2, s, δ
′, s′) ≡

∃γ.Trans(δ1, s, γ, s′) ∧ δ′ = (γ||δ2)
∨ ∃γ.Trans(δ2, s, γ, s′) ∧ δ′ = (δ1||γ) (1)

Clearly there are two notions of concurrency to be con-
sidered: the possibility of performing several actions at the
same instant (true concurrency), and the possibility of in-
terleaving the execution of several programs (interleaved
concurrency). These were combined in [1] by modifying
Golog to incorporate sets of concurrent actions. However,
they give a semantics which may call for actions to be per-
formed that are not possible and which can result in unintu-
itive program behavior. A key aspect of our work is a more
robust integration of these two notions of concurrency.

If the theory of action D is enriched with Trans and
Final, planning an execution of a Golog program δ is basi-
cally a theorem proving task as shown in equation (2). Here
Trans∗ indicates reflexive transitive closure. The situation
s gives a sequence of actions forming a legal execution of
the program.

D |= ∃s. [Trans ∗ (δ, S0, δ
′, s) ∧ Final(δ′, s)] (2)

In IndiGolog agents can also proceed without planning
a full terminating execution of their program, by searching
for a legal “next step” action a such that D |= ∃a . Trans ∗
(δ, s, δ′, do(a, s)). The search operator (Σ) controls which
parts of the program are subject to full execution planning,
providing fine-grained control over nondeterminism and the
amount of planning work required.

As an example of a multi-agent task specification in
Golog, consider a program MakeSalad that instructs a
team of agents to prepare a simple salad:

procMakeSalad(dest)
[π(agt)(ChopTypeInto(agt, Lettuce, dest)) ||
π(agt)(ChopTypeInto(agt, Carrot, dest)) ||
π(agt)(ChopTypeInto(agt, Tomato, dest))] ;

π(agt) [acquire(agt, dest) ;
beginTask(agt,mix(dest, 1)) ;

release(agt, dest)] end (3)



The sub-procedure ChopTypeInto (not shown) picks
an object of the given type and an available chopping board,
chops the object using the board, then transfers it into the
destination container. MakeSalad tells the agents to do
this for a lettuce, a carrot and a tomato, then mix the ingre-
dients together for 1 minute. Note the nondeterminism in
this program - the agent assigned to handling each ingredi-
ent is not specified (π construct), nor is the order in which
they should be added (|| construct). There is thus consid-
erable scope for cooperation between agents to effectively
carry out this task.

While this is a valid program in standard IndiGolog,
executing it using the existing semantics would be far
from ideal. The explicit temporal component described
above must to added to IndiGolog to accommodate the
mix(dest, 1) task. The lack of true concurrency would
mean only one agent could act at a time, while others would
remain idle. And since there is no support for natural ac-
tions, IndiGolog would fail to find a legal execution of this
program: it would find that the final action release cannot
be performed after doing beginTask, as our theory of ac-
tion ensures agents can only be doing one thing at a time.
But it would not determine that the natural action endTask
will occur after one minute and enable to program to finish.

Our new Golog variant, MIndiGolog, is designed to pro-
duce executions of such programs in a manner that over-
come these limitations, and is thus suitable for specifying
tasks to be performed by multi-agent teams in distributed
problem solving applications.

3. MIndiGolog

We have integrated three extensions to the situation cal-
culus with the semantics of IndiGolog to better model the
dynamics of a multi-agent setting. These extensions allow
agents to represent time, concurrently-occurring actions,
and natural actions in a robust way.

3.1. Time

It is clear from the background section that the approach
of [16] to modeling time is complicated by the presence of
concurrent actions. To avoid the need for the Coherent
predicate, we attach the temporal argument to each situ-
ation rather than to each action. The successor situation
function do(a, s) becomes do(a, t, s), to indicate “action
a was performed at time t in situation s”. The possibility
predicate Poss(a, s) likewise becomes Poss(a, t, s). The
semantics of IndiGolog trivially accommodate this change,
and Coherent and time are no longer needed.

3.2. Concurrency

While it is straightforward to modify the IndiGolog
Trans rule for primitive actions to accept sets of concur-
rent actions, there are deeper implications for the concur-
rency operator. This is implemented by accepting a transi-
tion from either of the two programs as a transition for the
pair [3]. In the presence of true concurrency, this is insuffi-
cient. Suppose program δ1 may be transitioned by perform-
ing actions c1, and δ2 may be transitioned by performing
actions c2. As noted in [1], it should be possible to ex-
ploit true concurrency by performing both simultaneously,
i.e. c1 ∪ c2. However, this introduces several complications
that [1] does not address.

First, precondition interaction means that c1 ∪ c2 may
not be possible even if the individual actions are. The tran-
sition clause must ensure that the combination of the two
sets of actions is possible. Another issue arises when two
programs can legitimately be transitioned by executing the
same action. Consider the following programs which add
ingredients to a bowl:

δ1 = placeIn(Thomas, F lour,Bowl) ;
placeIn(Thomas, Sugar, Bowl)

δ2 = placeIn(Thomas, F lour,Bowl) ;
placeIn(Thomas,Egg, Bowl)

Executing δ1||δ2 should result in the bowl containing
two units of flour, one unit of sugar and an egg. How-
ever, an individual transition for both programs is c1 =
c2 = placeIn(Thomas, F lour,Bowl). Naively executing
c1 ∪ c2 to transition both programs would add only one unit
of flour. Alternately, consider two programs waiting for a
timer to ring:

δ1 = ringT imer ; acquire(Thomas,Bowl)
δ2 = ringT imer ; acquire(Richard, Board)

Both programs should be allowed to proceed with a sin-
gle occurrence of the ringT imer action, because it is an
aspect of the environment. To avoid unintuitive (and po-
tentially dangerous) behavior, concurrent execution must
not be allowed to transition both programs using the same
agent-initiated action. If an agent-initiated action may be
safely skipped, it can be enclosed in an appropriate if-then-
else or choice construct.

Taking these factors into account, we develop the im-
proved transition rule for concurrency in equation (4). The
first two lines are the original interleaved concurrency
clause from ConGolog, while the remainder characterizes
the above considerations for true concurrency. This robust
combination allows the language to more accurately reflect
the concurrency present in multi-agent teams. As with Con-
Golog and IndiGolog, our semantics make no attempt to



maximize concurrency or otherwise differentiate between
potential executions, they only state which transitions can
be legally performed.

Trans(δ1||δ2, s, δ
′, s′) ≡

∃γ . Trans(δ1, s, γ, s′) ∧ δ′ = (γ||δ2)
∨ ∃γ . Trans(δ2, s, γ, s′) ∧ δ′ = (δ1||γ)

∨ ∃c1, c2, γ1, γ2, t . T rans(δ1, s, γ1, do(c1, t, s))
∧ Trans(δ2, s, γ2, do(c2, t, s)) ∧ Poss(c1 ∪ c2, t, s)

∧ ∀a. [a ∈ c1 ∧ a ∈ c2 → Natural(a)]
∧ δ′ = (γ1||γ2) ∧ s′ = do(c1 ∪ c2, t, s) (4)

3.3. Natural actions

The formalism of [16] is adopted, with simple modifica-
tions for our handling of time. While planning with natural
actions has previously been done in Golog [15], the pro-
grammer was required to explicitly check for any possible
natural actions and ensure that they appear in the execution.
We significantly lower the burden on the programmer by
guaranteeing that all legal program executions result in legal
situations. MIndiGolog agents will plan for the occurrence
of natural actions without having them explicitly mentioned
in the program. They may optionally be included in the pro-
gram, instructing the agents to wait for the action to occur
before proceeding.

This is achieved using a new Trans clause for the case
of a single action c, as shown in equation (5). If s has an
LNTP tn and corresponding set of natural actions cn, a tran-
sition can be made in three ways: perform c at a time before
tn (fourth line), perform it along with the natural actions at
tn (fifth line), or wait for the natural actions to occur (sixth
line). If there is no LNTP, then c may be performed at any
time greater than start(s).

Trans(c, s, δ′, s′) ≡
∃t, tn, cn . Lntp(s, tn) ∧ t ≥ start(s)∧

∀a. [Natural(a) ∧ Poss(a, tn, s) ≡ a ∈ cn]∧
[t < tn ∧ Poss(c, t, s) ∧ s′ = do(c, t, s) ∧ δ′ = Nil

∨ Poss(c ∪ cn, tn, s) ∧ s′ = do(c ∪ cn, t, s) ∧ δ′ = Nil

∨ s′ = do(cn, tn, s) ∧ δ′ = c]
∨ ¬∃tn . Lntp(s, tn) ∧ ∃t . Poss(c, t, s)∧

t ≥ start(s) ∧ s′ = do(c, t, s) ∧ δ′ = Nil (5)

The occurrence of natural actions may also cause test
conditions within the program to become satisfied, so a new
Trans clause for φ? is also required as shown in equation
(6). This permits a program consisting of a single test con-
dition to make a transition if the condition is satisfied, or if

a natural action occurs: 2

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = Nil ∧ s′ = s

∨ ∃tn, cn . Lntp(s, tn) ∧ δ′ = φ? ∧ s′ = do(cn, tns)
∧ ∀a. [Natural(a) ∧ Poss(a, tn, s) → a ∈ cn] (6)

A MIndiGolog execution will thus contain all natural ac-
tions that will occur, regardless of whether they were con-
sidered explicitly by the programmer.

Contrast this with the standard handling of exogenous
events in IndiGolog, which is achieved by executing the
main program concurrently with a program that generates
exogenous actions:

δmain || (π(a)(Exog(a)? ; a))∗

This allows the program to make a legal transition regard-
less of what exogenous actions occur - an approach suitable
for dealing with arbitrary exogenous actions which may oc-
cur at any time, but suboptimal for handling predictable ex-
ogenous actions. Our approach allows the agents to directly
predict the natural actions that will occur and automatically
include them in a planned execution.

3.4. Legality of the semantics

Let a MIndiGolog Theory of Action be a theory of ac-
tion in the situation calculus enhanced with time, true con-
currency and natural actions, augmented with the predi-
cates Trans and Final from IndiGolog, modified accord-
ing to equations (4), (5) and (6). All legal executions of a
MIndiGolog program derived from such a theory of action
produce legal situations.

Lemma 1. Let D be a MIndiGolog theory of action. Then:

D |= ∀s, s′, δ, δ′.Legal(s) ∧ Trans(δ, s, δ′, s′)
→ Legal(s′)

Proof. By induction on the structure of δ. That the theorem
holds for the modified Trans clauses of equations (4), (5)
and (6) is straightforward, and no other clause constructs
new situation terms.

Theorem 1. LetD be a MIndiGolog theory of action. Then:

D |= ∀s′, δ, δ′ . T rans ∗ (δ, S0, δ
′, s′) → Legal(s′)

Thus, all legal executions of a MIndiGolog program pro-
duce legal situations.

Proof. From lemma 1, the legality of S0, and the properties
of transitive closure.

2φ[s] should be read as “φ holds in situation s”



Like standard IndiGolog, MIndiGolog will only call for
actions to be performed if it is actually possible to perform
them. MIndiGolog has the added advantage of effortlessly
incorporating any natural actions that may occur.

3.5. Example execution

The effect of our new semantics can be seen in fig-
ure 1(a), which shows one possible legal execution of
the MakeSalad program using the new semantics of
MIndiGolog3 in a domain with thee agents. Note the occur-
rence of several actions within each do statement, demon-
strating the integration of true concurrency into the lan-
guage. Note also the incorporation of natural endTask ac-
tions into the program, and the explicit occurrence time for
each action. (in this trace the occurrence times have been
instantiated to their earliest possible value).

For comparison purposes, we added a temporal element
and inserted explicit endTask actions into MakeSalad to
allow a legal execution to be found using the standard In-
diGolog semantics. Such an execution is shown in figure
1(b). Note that the lack of true concurrency means only
a single agent can act at each step, leaving the other two
agents completely idle. The ability to reduce idle time by
performing actions concurrency is clearly an advantage for
distributed problem solving applications.

3.6. Distributed execution planning

As the existing languages based on Golog have demon-
strated, an interpreter can be conveniently constructed us-
ing a logic programming language such a Prolog. We have
followed the style of [3, 4] to build interpreters for our
language in both Prolog and Oz [18], a multi-paradigm
programming language with strong support for distributed
computing.

One powerful feature of Oz is the ability to use several
networked computers to search for solutions to a logic pro-
gram in parallel. Since the task of planning a MIndiGolog
execution is encoded as a logic program, this immediately
allows a team of agents to distribute the execution planning
workload. Below we briefly summarize our implementa-
tion; the full version is available from the author’s website.

MIndiGolog programs are represented in Oz as record
terms (which are similar to Prolog data terms) with the
name of the record representing an operator and its features
the arguments. Actions are also encoded as records. As
in Prolog, uppercase terms in Oz represent variables. For
example, the program:

π(agt) [acquire(agt,Bowl); acquire(agt,Knife)]
3A Prolog implementation of the MIndiGolog seman-

tics, from which this trace was obtained, is available at
http://www.csse.unimelb.edu.au/˜rfk/golog/

is represented as follows:

pi(agt seq(acquire(agt bowl)
acquire(agt knife)))

The predicates Trans and Final have a straightforward
encoding as Oz procedures, using the case statement to en-
code each individual clause using pattern matching, and the
choice statement to explicitly introduce choice points:

proc {Trans D S Dp Sp}
case D of nil then fail
[] test(C) then {Holds.yes C S} Sp=S Dp=nil
[] seq(D1 D2) then choice D1r in

{Trans D1 S D1r Sp}
Dp=seq(D1r D2)

[] {Final D1 S}
{Trans D2 S Dp Sp}

end
[] pick(D1 D2) then choice

{Trans D1 S Dp Sp}
[] {Trans D2 S Dp Sp}
end

[] ... <additional cases ommitted> ...
end

end

proc {Final D S}
case D of nil then skip
[] test(Cond) then fail
[] seq(D1 D2) then {Final D1 S}

{Final D2 S}
[] pick(D1 D2) then choice

{Final D1 S}
[] {Final D2 S}
end

[] ... <additional cases ommitted> ...
end

end

A procedure Do(δ, s, s′) ≡ Trans ∗ (δ, s, δ′, s′) ∧
Final(δ′, s′) is defined that determines a legal execution
Sp for a given program D:

proc {TransStar D S Dp Sp}
choice Dp=D Sp=S
[] Dr Sr in {Trans D S Dr Sr}

{TransStar Dr Sr Dp Sp}
end

end

proc {Do D S Sp}
local Dp in
{TransStar D S Dp Sp}
{Final Dp Sp}

end
end



do [acquire_object(thomas,lettuce1),
acquire_object(richard,tomato1),
acquire_object(harriet,carrot1)] at 1

do [acquire_object(thomas,board1),
acquire_object(harriet,board2)] at 2

do [place_in(thomas,lettuce1,board1),
place_in(harriet,carrot1,board2)] at 3

do [begin_task(thomas,chop(board1)),
begin_task(harriet,chop(board2))] at 4

do [end_task(thomas,chop(board1)),
end_task(harriet,chop(board2))] at 7

do [acquire_object(thomas,bowl1)] at 8
do [transfer(thomas,board1,bowl1)] at 9
do [release_object(thomas,board1)] at 10
do [release_object(thomas,bowl1),

acquire_object(richard,board1)] at 11

do [place_in(richard,tomato1,board1),
acquire_object(harriet,bowl1)] at 12

do [begin_task(richard,chop(board1)),
transfer(harriet,board2,bowl1)] at 13

do [release_object(harriet,board2),
end_task(richard,chop(board1))] at 18

do [release_object(harriet,bowl1)] at 19
do [acquire_object(richard,bowl1)] at 20
do [transfer(richard,board1,bowl1)] at 21
do [release_object(richard,board1)] at 22
do [release_object(richard,bowl1)] at 23
do [acquire_object(thomas,bowl1)] at 24
do [begin_task(thomas,mix(bowl1,1))] at 25
do [end_task(thomas,mix(bowl1,1))] at 26
do [release_object(thomas,bowl1)] at 27

(a) One possible execution of the MakeSalad program with three agents, using MIndiGolog. Multiple actions occur at each step.

do acquire_object(thomas,lettuce1) at 1
do acquire_object(thomas,board1) at 2
do place_in(thomas,lettuce1,board1) at 3
do begin_task(thomas,chop(board1)) at 4
do end_task(thomas,chop(board1)) at 7
do acquire_object(thomas,bowl1) at 8
do transfer(thomas,board1,bowl1) at 9
do release_object(thomas,board1) at 10
do release_object(thomas,bowl1) at 11
do acquire_object(thomas,tomato1) at 12
do acquire_object(thomas,board1) at 13
do place_in(thomas,tomato1,board1) at 14
do begin_task(thomas,chop(board1)) at 15
do end_task(thomas,chop(board1)) at 18
do acquire_object(thomas,bowl1) at 19
do transfer(thomas,board1,bowl1) at 20

do release_object(thomas,board1) at 21
do release_object(thomas,bowl1) at 22
do acquire_object(thomas,carrot1) at 23
do acquire_object(thomas,board1) at 24
do place_in(thomas,carrot1,board1) at 25
do begin_task(thomas,chop(board1)) at 26
do end_task(thomas,chop(board1)) at 29
do acquire_object(thomas,bowl1) at 30
do transfer(thomas,board1,bowl1) at 31
do release_object(thomas,board1) at 32
do release_object(thomas,bowl1) at 33
do acquire_object(thomas,bowl1) at 34
do begin_task(thomas,mix(bowl1,1)) at 35
do end_task(thomas,mix(bowl1,1)) at 36
do release_object(thomas,bowl1) at 37

(b) One possible execution of the MakeSalad program with three agents, using IndiGolog. Only one agent acts at each step.

Figure 1. Example executions of the MakeSalad program

This Do procedure can then be passed to the parallel
search functionality to plan a program execution. Here
“agent1” and “agent2” are the DNS names of agents in the
team, and “Goloz” is an Oz functor (basically, a portable
piece of code) that exports the Do procedure defined above:

proc {ParallelDo D Exec}
PS={New Search.parallel

init(agent1:1#ssh agent2:1#ssh)}
in
Exec={PS one(Goloz $)}

end

When this code is run, it will utilize the computational
resources of both agents to plan a legal execution of a given
MIndiGolog program. This requires that the same informa-
tion is available to each agent, which restricts the technique
to fully-observable domains. We are currently developing
an algorithm for cooperative execution of MIndiGolog pro-

grams that utilizes such distribution of the planning work-
load.

4. Related work

That Golog shows promise for multi-agent teams is ev-
idenced by the success of [6] with a RoboCup soccer team
executing a shared Golog program. However, the semantics
of their Golog variant “ReadyLog” remain largely single-
agent and do not address concerns such as: the possibil-
ity of performing actions concurrently and the coordination
of concurrent actions; differing knowledge or beliefs be-
tween team members; sharing the computational workload
of planning; and predicting the behavior of teams mem-
bers and the environment in the face of many concurrently-
executing tasks. MIndiGolog overcomes some of these lim-
itations, while our ongoing work on cooperative execution



will address the others.
As stated earlier, there has been much promising work on

distributed problem solving systems using the Hierarchical
Task Networks formalism ([17, 5, 8], among others). We
believe high-level program execution to have several clear
advantages over HTN, in particular the ready availability of
controlled nondeterminism. Combined with familiar pro-
gramming constructs such as loops and if-then-else, it pro-
vides a very powerful formalism for expressing complex be-
haviors and tasks [7, 2]. Golog also benefits from a logic of
action rich enough to capture many challenging aspects of
multi-agent domains (such as time and concurrency) while
remaining computationally feasible.

Note that this paper focuses on task specification using
Golog and does not deal with coordination between team
members. We are currently developing techniques for coop-
erative execution of MIndiGolog programs based on these
successful approaches to executing HTN specifications.

5. Conclusions and future work

Our work integrates several important extensions to the
situation calculus and Golog to better model the dynam-
ics of multi-agent teams. Specifically, MIndiGolog com-
bines true and interleaved concurrency, an explicit account
of time, and seamless integration of natural actions. It de-
fines legal executions of high-level programs that are suit-
able for cooperative execution by a multi-agent team.

Since the semantics of MIndiGolog are based on first-
order logic, existing techniques for distributed logic pro-
gramming can be used to share the execution-planning
workload between agents. In fully-observable domains, the
parallel search capabilities of Oz can be used directly. We
are currently developing a more sophisticated coordination
strategy to augment these techniques and allow coopera-
tive execution of MIndiGolog programs by a team of au-
tonomous agents in partially observable domains.

Such coordination strategies are typically based on ex-
plicit mental attitudes such as knowledge and intention. A
key aspect of our recent work has been the development
of a computationally-feasible account of knowledge in par-
tially observable domains [9]. This requires efficient rea-
soning about what cannot be changed by certain types of
action, and we have developed a technique for answering
such “persistence queries” under some simple assumptions
[10]. An implementation of these techniques will form the
base of our distributed problem solving system.

This paper thus represents a first step towards provid-
ing the advantages of Golog (such as controlled nonde-
terminism, powerful programming constructs, and a rich
logic of action) for task specification for multi-agent teams.
While significant work remains to be done to produce a
full distributed problem solving system, our current imple-

mentations of MIndiGolog in Prolog and Oz, particularly
combined with distributed logic programming techniques,
have already proven useful for programming the behavior
of multi-agent teams in fully observable domains.
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