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Abstract

This thesis develops several powerful extensions to the situation calculus for rea-
soning about multi-agent teams in asynchronous domains. We enrich the situation
calculus with an explicit representation of the local perspective of each agent, upon
which we then construct: a partially-ordered representation of actions for planning
the joint execution of a shared task; a theory of individual-level knowledge that al-
lows agents to consider arbitrarily-long sequences of hidden actions; and a formalism
for group-level epistemic modalities that allows common knowledge to be reasoned
about using a regression rule.

Planning in the situation calculus typically involves building a fully-ordered se-
quence of the actions to be performed, requiring constant synchronisation between
agents if the plan is to be carried out cooperatively. We develop a partially-ordered
representation of actions which we call a joint execution. These structures allow
independent actions to be performed independently while ensuring that, when nec-
essary, synchronisation can be achieved based on the local observations of each agent.
Joint executions can be reasoned about using standard situation calculus techniques,
allowing them to easily replace raw situation terms during planning.

Existing accounts of knowledge in the situation calculus assume that everyone
always knows how many actions have occurred, demanding significant synchronicity
among agents. In asynchronous domains agents must instead consider arbitrarily-
long sequences of hidden actions, which cannot be reasoned about effectively using
existing techniques. We develop a new reasoning technique called the persistence
condition operator to augment the standard regression operator, and use it to build a
new account of individual-level knowledge that correctly accounts for hidden actions
while retaining an effective reasoning procedure. Our formalism allows agents to
reason directly about their own knowledge using only their local information.

Common knowledge is traditionally modelled using an explicit second-order ax-
iom, which precludes regression as an effective reasoning technique. We formulate
a more powerful language of group-level knowledge using an epistemic interpreta-
tion of dynamic logic, and develop a regression rule that is sound and complete for
this language. As a consequence, our formalism allows common knowledge to be
reasoned about effectively using standard regression techniques.

The end result is a more robust and flexible account of knowledge and action
in the situation calculus, suitable both for reasoning about, and for planning in,
asynchronous multi-agent domains.
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Chapter 1
Introduction

The situation calculus, along with the programming language Golog that is built
upon it, is a powerful formalism for reasoning about dynamic worlds and specifying
the behaviour of autonomous agents. It combines a rich language for expressing
domain features with techniques for effective reasoning and a straightforward im-
plementation using logic programming. But while powerful, the situation calculus
currently suffers some major limitations that make it unsuitable for reasoning about
asynchronous multi-agent domains.

We begin by noting that there is a significant body of work on modelling and
implementing multi-agent systems in the situation calculus, including: the cognitive
agent specification language and verification environment [110]; theories of coordi-
nation and ability [35]; entries in AI competitions such as robot soccer [27] and
robot rescue [26]; reasoning about the epistemic feasibility of plans [56]; analysing
multi-player games [7]; and the cooperative execution of Golog programs [27, 44].
This literature shows the power and flexibility of the situation calculus, but also
highlights three current weaknesses when working with rich multi-agent domains.

First, each of these works has been limited to synchronous domains – domains
in which each agent’s local perspective on the world is updated in lock-step with the
global perspective available to the system designer. This restriction ensures that,
while an agent may not know the full state of the world, it will always know precisely
how many actions have been performed. The agents can therefore perform effective
automated reasoning using regression, a process that depends on systematically
removing action terms from a query. In many cases this synchronicity restriction is
enforced using a blanket assumption that all actions are publicly observable.

Second, the fundamental unit of reasoning, and the output of the Golog execution
planning process, is the situation: a complete, ordered history of all actions that
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CHAPTER 1. INTRODUCTION

are to be performed. Having to execute a totally-ordered sequence of actions is far
from ideal in a multi-agent setting, as it requires constant synchronisation between
the agents. While this may be acceptable for systems that are already restricted to
synchronous domains, it does not take advantage of the concurrency inherent in a
multi-agent team. In asynchronous domains the required synchronisation of actions
may be impossible to achieve, and a partially-ordered representation must be used
instead. But there have been no formal accounts of such a representation in the
existing situation calculus literature.

Third, the situation calculus lacks a comprehensive treatment of group-level
epistemic modalities such as common knowledge, which are fundamental to coordi-
nation in multi-agent domains. While common knowledge can easily be modelled
using an explicit second-order axiom, this precludes the use of regression for effective
automated reasoning. In synchronous domains agents can often coordinate their ac-
tivities without reasoning explicitly about common knowledge, but in more general
multi-agent domains the lack of an effective reasoning procedure for common knowl-
edge can be a serious shortcoming.

In each of these cases, the problem is not in modelling asynchronous multi-
agent domains, but in combining such rich domain models with effective reasoning
techniques. The standard technique for effective reasoning in the situation calculus,
and the core of the Golog execution planning procedure, is regression. It operates
by systematically removing action terms from a query until it is in a form that is
easy to answer. The traditional restriction of the situation calculus to synchronous
domains allows all agents to know the number of actions performed, so they can
directly use existing regression-based techniques for reasoning and planning.

This thesis lifts that restriction by developing reasoning and planning techniques
for asynchronous domains – domains in which the state of the world can change with-
out updating the local perspective of each agent. We begin by explicitly representing
this local perspective: whenever an action occurs, each agent makes a corresponding
set of observations that are local to that agent. By allowing the set of observations
to be empty, we formalise the case where asynchronicity means some actions are
completely hidden from some agents.

On top of this seemingly simple extension, we construct a planning process based
on partially-ordered action sequences, a new technique for effective inductive rea-
soning to augment standard regression, and a principled axiomatisation of both
individual and group-level knowledge coupled with an effective reasoning procedure.
These contributions greatly extend the reach of the situation calculus, enabling its
use for specifying, simulating, and implementing more realistic multi-agent systems.

2



1.1. MOTIVATION

1.1 Motivation

To make things more concrete, let us introduce two motivating examples that will
be used throughout the thesis, along with an overview of the challenges they pose
to existing techniques from the situation calculus literature.

Example 1: The Cooking Agents

Cathy is hosting a dinner party. A brilliant engineer but a mediocre cook, she has
built a team of robotic chefs to help her prepare the meal, and must now program
them to carry out their duties. She needs a powerful formalism with which the
agents can plan their actions, and a programming language flexible enough to spec-
ify the major steps in each recipe while leaving the precise details of execution for the
agents to plan amongst themselves. Moreover, she wants to specify the tasks to be
performed as a single shared program, and have the agents automatically distribute
the work amongst themselves in such a way that they can operate independently
where possible and synchronise their actions only when necessary.

The situation calculus offers a compelling approach for this example domain:
each recipe can be represented as a Golog program, and the agents can cooperate
to plan and perform the concurrent execution of these shared programs. However,
existing Golog implementations generate raw situation terms as the output of their
planning process. These are fully-ordered sequences of the actions to be performed,
requiring constant synchronisation if the agents are to execute them cooperatively.

In synchronous domains this is not a problem, as the agents will always know
how many steps of execution have already been performed, and thus what actions
should be performed next. But it is still desirable to take advantage of the natural
concurrency present when planning for a team of agents. The Golog planning process
must be modified to reason about and allow such concurrency.

In asynchronous domains, an agent may not necessarily know how far execution
has progressed, and may thus be unsure when or if to perform its next action. The
planning process should account for this by only calling for agents to perform an
action if they will know, based on their local information, that the action should be
performed. But the situation calculus currently has no means of representing this
kind of partially-ordered action structure, or of determining whether it is executable.

Rather than demand that Cathy equip her robots with a global synchronisation
mechanism of some kind, we will extend the situation calculus and the semantics of
Golog execution planning to better handle concurrency and inter-agent synchroni-
sation in asynchronous, partially-observable domains.

3



CHAPTER 1. INTRODUCTION

Example 2: The Party Invitation

Alice and Bob have heard about Cathy’s party but don’t know where it is, and
have just received an invitation telling them the location. Having suffered decades
of trouble with their communications, they like to reason about each other’s knowl-
edge by directly observing each other’s actions. If Alice reads the invitation, she will
know the location of the party. But will Bob know that she knows this? What if he
temporarily leaves the room, meaning Alice is able to read the invitation in secret?
And most importantly, can they achieve common knowledge of the party’s location
in order to coordinate their travel plans for the evening?

The situation calculus permits an elegant axiomatisation of this domain, but
its standard account of knowledge uses regression for effective reasoning. Existing
regression techniques cannot handle two important aspects of this example.

First, the standard account of knowledge requires that whenever an action oc-
curs, all agents know that an action has occurred. In domains such as this example,
where some actions may be completely hidden, each agent must also establish that
its knowledge will persist after the occurrence of arbitrarily-many hidden actions.
Formulating this requirement involves a second-order induction axiom, which pre-
cludes the use of regression for effective automated reasoning.

Second, the situation calculus lacks a comprehensive treatment of group-level
epistemic modalities such as common knowledge. The difficulty here is that the
standard group-level knowledge operators are not powerful enough to express the
regression of common knowledge. Instead, common knowledge is typically handled
using a separate second-order definition, again precluding the use of regression for
effective automated reasoning.

Rather than demand that Alice and Bob perform open-ended second-order theo-
rem proving, we will develop a new technique for inductive reasoning in the situation
calculus, use it to formalise an account of knowledge in the face of hidden actions,
and provide a new formulation of group-level epistemic modalities which is powerful
enough to capture a regression rule for common knowledge.

1.2 Contributions

As a launching point for our investigations we develop a new multi-agent variant
of Golog, with which a team of agents can plan the cooperative execution of a
shared task. The language, dubbed MIndiGolog, is implemented on the Mozart
programming platform, using its powerful distributed logic programming capabil-
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1.2. CONTRIBUTIONS

ities to share the planning workload between all members of the team. But this
initial implementation is limited to synchronous, full-observable domains due to the
underlying reasoning machinery of the situation calculus.

To extend the approach to asynchronous domains, we construct an explicit repre-
sentation of the local observations made by each agent when an action is performed.
We introduce a function Obs(agt, a, s) returning the set of observations made by an
agent when action a is performed in situation s. Each situation then corresponds
to an agent-local view, denoted V iew(agt, s), which is the sequence of observations
made by the agent in situation s. Crucially, the agent’s view excludes cases where
Obs(agt, a, s) is empty, allowing some actions to be completely hidden.

With a principled axiomatisation of the local perspective of each agent in hand,
we then construct new formalisms and techniques for effective use of the situation
calculus in asynchronous multi-agent domains. Specifically, we provide:

• A partially-ordered representation of the actions to be performed by a team
of agents, that ensures synchronisation is always possible based on the local
information available to each agent.

• A new procedure for effective inductive reasoning about a restricted form of
query, using a meta-level fixpoint calculation on top of the standard regression
operator. This allows certain second-order aspects of our axiomatisation to be
“factored out” of the reasoning process when formulating regression rules.

• A new formalism for individual-level knowledge based explicitly on the agent’s
local view, with accompanying regression rules that use our new technique for
inductive reasoning to handle arbitrarily-long sequences of hidden actions.

• A comprehensive treatment of group-level epistemic modalities such as com-
mon knowledge, using an epistemic interpretation of dynamic logic to gain the
expressive power needed to formulate a regression rule for common knowledge.

These contributions provide a powerful fundamental framework for the situation
calculus to represent and reason about asynchronous multi-agent domains.

While our results significantly extend the capabilities of the situation calculus,
they are also firmly grounded in its existing theory and practice. The new concepts
are axiomatised in a way that is compatible with standard basic action theories, as
well as with common extensions such as concurrent actions and continuous time.
We are therefore confident that our results can be integrated smoothly with existing
theories and systems based on the situation calculus.
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CHAPTER 1. INTRODUCTION

1.3 Scope

Before proceeding with the main body of the thesis, it is worth pausing to clarify
the precise scope of our investigation and hopefully avoid any confusion over the
details of our terminology and contributions.

1.3.1 Asynchronicity

The term “asynchronous domain” has come to mean slightly different things in
different research fields, so our use of the term needs to be carefully delineated.
Several common definitions frame asynchronicity as a property specific to inter-agent
communication. For example, Fischer et al. [30] describe asynchronous domains as
those having unbounded message delivery times, while Halpern and Moses [39] use
the term to mean domains with delayed message delivery and no global clock.

The definition used in this thesis is more primitive than these, and corresponds
to the account given by van Benthem and Pacuit [118]: a domain is synchronous
if at any time, all agents know precisely how many actions have been performed.
The internal state of each agent is thus updated in lock-step with the global state of
the world. By contrast, in asynchronous domains agents must allow for potentially
arbitrarily-many hidden actions which may or may not have occurred.

Where a communication-specific definition of asynchronicity is used, as in [30,
39], the potential for such hidden actions is implicitly assumed. The situation cal-
culus typically assumes the exact opposite, limiting itself to strictly synchronous
domains. We therefore argue that modelling richer notions of asynchronous com-
munication in the situation calculus first requires a robust account of the kind of
foundational asynchronicity treated in this thesis. While we do not specifically in-
vestigate asynchronous communication in the style of [30, 39], Chapter 4 shows that
it has quite a natural formulation in our framework.

1.3.2 Common Knowledge

One of our contributions may, at first glance, seem to suggest that our definition of
asynchronicity is flawed: our work on reasoning about common knowledge. Based on
the famous paper of Halpern and Moses [39], it has become something of a “grand
theorem” in epistemic reasoning that common knowledge cannot be obtained in
asynchronous domains. So how can this thesis devote an entire chapter to reasoning
about common knowledge in such domains?

The results of [39] apply specifically to obtaining common knowledge via asyn-
chronous communication. They show that what is required to obtain common knowl-
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edge is not synchronicity, per se, but simultaneity – the co-presence of the agents
at the occurrence of a common event, which they all simultaneously observe. Asyn-
chronous communication is not such a common event, and hence it cannot be used
to obtain common knowledge.

Our approach, in essence, offers an explicit axiomatisation of this notion of simul-
taneity. By reasoning about their observations and the observations of others, the
agents can deduce whether the occurrence of an action is simultaneously observed
and thus whether it can contribute to common knowledge. Indeed, it is straightfor-
ward to model systems with no simultaneous events in our framework, and corre-
spondingly straightforward to demonstrate that the agents cannot obtain common
knowledge in such systems. Our contributions thus complement the standard re-
sults on asynchronicity and common knowledge, capturing them in the situation
calculus and providing regression-based reasoning procedures with which they can
be explored.

1.3.3 The Situation Calculus

As the title suggests, this thesis focuses exclusively on reasoning about multi-agent
systems in the situation calculus. There are of course a range of related formalisms
for reasoning about knowledge, action and change, which we overview briefly in
Chapter 2 but otherwise do not directly consider.

Most closely related to the situation calculus are the fluent calculus of Thielscher
[115] and the event calculus of Kowalski and Sergot [50]. There is also the family
of approaches known as “dynamic epistemic logic” [8, 118, 119], which are based on
modal logic and from which we draw some inspiration for our work in later chapters.

While there have been many attempts to combine the various action formalisms
into a unifying theory of action, including [9, 51, 100, 113], there is yet to emerge
a clear standard in this regard. In the meantime, we find the notation and meta-
theory of the situation calculus particularly suitable for expressing our main ideas,
and find the Golog programming language to be a particularly powerful and flexible
approach to specifying agent behaviour and programming shared tasks.

It is our hope that the strong underlying similarities between the major action
formalisms will allow the ideas presented in this thesis to find some application or
resonance beyond the specifics of the situation calculus.

7



CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

The thesis now proceeds as follows:

• Chapter 2 presents the necessary background material on the situation calcu-
lus, Golog, and the Mozart programming system. More detailed reviews of the
relevant literature are included in each subsequent chapter.

• Chapter 3 introduces MIndiGolog, a Golog variant suitable for planning the
cooperative execution of a shared task. We demonstrate an implementation us-
ing distributed logic programming to share the planning workload, and discuss
why current situation calculus techniques limit it to synchronous domains.

• Chapter 4 formalises the notion of a “local perspective” by reifying the obser-
vations made by each agent as the world evolves. We show that this formalism
generalises existing approaches in which this perspective is modelled implicitly.

• Chapter 5 develops joint executions, a restricted kind of event structure where
synchronisation is based on observations, and shows how to use them in plan-
ning the asynchronous execution of a shared MIndiGolog program.

• Chapter 6 develops a new technique for effective inductive reasoning, capable
of handling a limited form of query that universally quantifies over situation
terms. Dubbed the persistence condition operator, it uses a restricted fixpoint
calculation to replace a second-order induction axiom.

• Chapter 7 develops a formalism for individual knowledge in the face of hidden
actions, by specifying an agent’s knowledge in terms of its local view. The
persistence condition operator is used to augment the traditional regression
rule for knowledge to account for arbitrarily-long sequences of hidden actions.

• Chapter 8 introduces common knowledge by using the syntax of dynamic logic
to formulate a more expressive epistemic language than existing situation cal-
culus theories. We formulate a regression rule for these complex epistemic
modalities and formally relate them to our account of individual knowledge.

• Chapter 9 concludes with a summary of our achievements and our plans for
ongoing work based on these results.

• The Appendices provide detailed proofs for those theorems where only a proof
sketch is given in the main thesis body, describe how to obtain the software
developed for this thesis, and specify axioms for the “cooking agents” example
domain.
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Chapter 2
Background

This chapter covers general background material for the thesis and provides a brief
overview of the related literature. We defer more specific technical details and
discussion of related work to the individual chapters that follow, where it can be
presented in the appropriate context.

Readers familiar with the situation calculus are encouraged to briefly review this
chapter. While it does not present any new results, it does introduce some novel
notation and definitions which will be needed later in the thesis. They are introduced
here to maintain consistency of the presentation. The introductory material on the
Mozart programming platform may also be helpful.

We begin by introducing the base language of the situation calculus in Sec-
tion 2.1, illustrated using examples from the “cooking agents” domain. Section 2.2
introduces the Golog family of programming languages, which are the standard for-
malism for representing complex tasks in the situation calculus. Reasoning about
the knowledge of an agent, or epistemic reasoning, is covered in Section 2.3. Related
formalisms for reasoning about action and change are briefly discussed in Section
2.4. Finally, Section 2.5 introduces the Mozart programming system, which will be
used to implement our multi-agent Golog variant. Basic familiarity with formal logic
is assumed throughout; readers requiring background on such material may find a
gentle introduction in [43] and a more detailed treatment in [31].

2.1 The Situation Calculus

The situation calculus is a powerful formalism for describing and reasoning about
dynamic worlds. It was first introduced by McCarthy and Hayes [70] and has since
been significantly expanded and formalised [85, 92]. We use the particular variant
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due to Reiter et. al. at the University of Toronto, sometimes called the “Toronto
school” or “situations-as-histories” version. The formalisation below is based on
the standard definitions from [59, 85, 91], but has been slightly generalised to ac-
commodate several existing extensions to the situation calculus, as well as our own
forthcoming extensions, in a uniform manner.

Readers familiar with the situation calculus should therefore note some modified
notation: the unique names axioms Duna are incorporated into a general background
theory Dbg; the Poss fluent is subsumed by a general class of action description
predicates defined in Dad; we parameterise the “future situations” predicate s @ s′

to assert that all intermediate actions satisfy a given predicate using s <α s′; and we
use the single-step variant of the regression operator, with corresponding definitions
of regressable formulae.

2.1.1 Notation

The language Lsitcalc of the situation calculus is a many-sorted language of first-order
logic with equality, augmented with a second-order induction axiom, containing the
following disjoint sorts:

• Action terms are functions denoting individual instantaneous events that can
cause the state of the world to change;

• Situation terms are histories of the actions that have occurred in the world,
with the initial situation represented by S0 and successive situations built using
the function do : Action× Situation→ Situation;

• Object terms represent any other object in the domain.

Fluents are predicates or functions that represent properties of the world that may
change between situations, and so take a situation term as their final argument.
Predicates and functions that do not take a situation term are called rigid. We use
the term primitive fluent to describe fluents that are directly affected by actions,
rather than being defined in terms of other fluents. No functions other than S0 and
do produce values of sort Situation.

For concreteness, let us present some formulae from an example domain that will
be used throughout the thesis. In the “cooking agents” domain a group of robotic
chefs inhabit a kitchen containing various ingredients and utensils, and they must
cooperate to prepare a meal. Some example statements from this domain include
“Joe does not have the knife initially”, “Jim has the knife after he acquires it” and
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“It is only possible to acquire an object if nobody else has it”. Formally:

¬HasObject(Joe,Knife1, S0)

HasObject(Jim,Knife1, do(acquire(Jim,Knife1), S0))

Poss(acquire(agt, obj), s) ≡ ¬∃agt2 : HasObject(agt2, obj, s)

Here HasObject is a primitive fluent, while Poss is defined in terms of it.

Lsitcalc contains the standard alphabet of logical connectives, constants > and
⊥, countably infinitely many variables of each sort, countably infinitely many pred-
icates of each arity, etc; for a complete definition, consult the foundational paper
by Pirri and Reiter [85]. We follow standard naming conventions for the situation
calculus: upper-case roman names indicate constants; lower-case roman names in-
dicate variables; greek characters indicate meta-variables or formula templates. All
axioms universally close over their free variables at outermost scope. The notation
t̄ indicates a vector of terms of context-appropriate arity and type. The connectives
∧, ¬, ∃ are taken as primitive, with ∨, →, ≡, ∀ defined in the usual manner.

In multi-agent domains it is customary to introduce a distinct sort Agent to
explicitly represent the agents operating in the world, and we will do so here. As
seen in the example formulae above, the first argument of each action term gives the
performing agent, which can be accessed by the function actor(a).

Complex properties of the state of the world are represented using uniform for-
mulae. These are basically logical combinations of fluents referring to a common
situation term.

Definition 1 (Uniform Terms). Let σ be a fixed situation term, r an arbitrary
rigid function symbol, f an arbitrary fluent function symbol, and x a variable that
is not of sort Situation. Then the terms uniform in σ are the smallest set of
syntactically-valid terms satisfying:

τ ::= x | r(τ̄) | f(τ̄ , σ)

Definition 2 (Uniform Formulae). Let σ be a fixed situation term, R an arbitrary
rigid predicate, F an arbitrary primitive fluent predicate, τ an arbitrary term uni-
form in σ, and x an arbitrary variable that is not of sort Situation. Then the
formulae uniform in σ are the smallest set of syntactically-valid formulae satisfying:

φ ::= F (τ̄ , σ) |R(τ̄) | τ1 = τ2 |φ1 ∧ φ2 | ¬φ | ∃x : φ
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We will call a formula uniform if it is uniform in some situation. The important
aspect of this definition is that the formula refers to no situation other than σ, which
appears as the final argument of all fluents in the formula. In particular, uniform
formulae cannot quantify over situations or compare situation terms, and cannot
contain non-primitive fluents.

The meta-variable φ is used throughout to refer to an arbitrary uniform formula.
Since they represent some aspect of the state of the world, it is frequently useful
to evaluate uniform formulae at several different situation terms. The notation
φ[s′] represents a uniform formula with the particular situation s′ inserted into all
its fluents. We may also completely suppress the situation term to simplify the
presentation, using φ−1 to represent a uniform formula with the situation argument
removed from all its fluents. For example, given:

φ = HasObject(Jim,Knife1, s) ∧HasObject(Joe,Bowl2, s)

Then we have:

φ[s′] = HasObject(Jim,Knife1, s′) ∧HasObject(Joe,Bowl2, s′)

φ−1 = HasObject(Jim,Knife1) ∧HasObject(Joe,Bowl2)

Note that these are strictly meta-level operations, corresponding to possibly quite
complex sentences from the underlying logic. They are not terms or operators from
the logic itself.

2.1.2 Axioms

The dynamics of a particular domain are captured by a set of sentences from Lsitcalc
called a basic action theory. Queries about the behaviour of the world are posed as
logical entailment queries relative to this theory.

Definition 3 (Basic Action Theory). A basic action theory, denoted D, is a set of
situation calculus sentences (of the specific syntactic form outlined below) describing
a particular dynamic world. It consists of the following disjoint sets: the founda-
tional axioms of the situation calculus (Σ); action description axioms defining pre-
conditions etc for each action (Dad); successor state axioms describing how primitive
fluents change between situations (Dssa); axioms describing the value of primitive
fluents in the initial situation (DS0); and axioms describing the static background
facts of the domain (Dbg):

D = Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg
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These axioms must satisfy some simple consistency criteria to constitute a valid
domain description; see [85] for the details. This definition is slightly broader than
the standard definitions found in the literature [59, 85, 91] and is designed to ac-
commodate a variety of extensions to the situation calculus in a uniform manner.

We assume an arbitrary, but fixed, basic action theory D.

Background Axioms

The set Dbg characterises the static aspects of the domain, and contains all axioms
defining rigid predicates or functions. In particular, it must contain a set of unique
names axioms asserting that action terms with different types or arguments are in
fact different, e.g.:

acquire(agt, obj) 6= release(agt, obj)

acquire(agt1, obj1) = acquire(agt2, obj2) → agt1 = agt2 ∧ obj1 = obj2

It also contains domain closure axioms for the sorts Action, Agent and Ob-

ject, and defines the function actor(a) to give the agent performing an action.
The background axioms are a generalisation of the set Duna commonly found in the
literature, which contains only the unique names axioms.

Successor State Axioms

The set Dssa contains one successor state axiom for each primitive fluent in the
domain. These axioms provide an elegant monotonic solution to the frame problem
for that fluent [92] which has been instrumental to the popularity and utility of the
situation calculus. They have the following general form:

F (x̄, do(a, s)) ≡ ΦF (x̄, a, s)

Here ΦF is uniform in s. While we will make no assumptions about the internal
structure of ΦF , it typically takes the form shown below, which may help elucidate
the purpose of these axioms:

F (x̄, do(a, s)) ≡ Φ+
F (x̄, a, s) ∨ F (x̄, s) ∧ ¬Φ−F (x̄, a, s)

Here Φ+
F and Φ−F are formulae uniform in s, representing the positive and negative

effect axioms for that fluent. This may be read as “F is true after performing a if a
made it true, or it was previously true and a did not make it false”. For example,
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the dynamics of the HasObject fluent may be specified using:

HasObject(agt, obj, do(a, s)) ≡ a = acquire(agt, obj)

∨ HasObject(agt, obj, s) ∧ a 6= release(agt, obj)

For functional fluents, Dssa contains a similar axiom to specify the value v of the
fluent after an action has occurred:

f(x̄, do(a, s)) = v ≡ Φf (v, x̄, a, s)

Action Description Predicates

The set Dad generalises the standard action precondition axioms [85] to define fluents
that describe various aspects of the performance of an action, which we call action
description predicates. These are the only non-primitive fluents permitted in a basic
action theory. The predicate Poss(a, s) is the canonical example, indicating whether
it is possible to perform an action in a given situation. The set Dad contains a single
axiom of the following form, defining the complete set of preconditions for the action
variable a, where ΠPoss is a formula uniform in s:

Poss(a, s) ≡ ΠPoss(a, s)

Note that this is a slight departure from the standard approach of [85], in which
the preconditions for each action type are enumerated individually. The more re-
strictive approach presented here embodies a domain-closure assumption on the
Action sort. If there are finitely many action types then ΠPoss is simply the com-
pletion of the precondition axioms for each action type. The single-axiom form is
necessary when quantifying over “all possible actions” and has been widely used in
the literature [96, 124].

In principle, any number of predicates and functions can be defined in this way;
a common example is the sensing-result function SR(a, s) which we will describe in
Chapter 4. The general notion of an action description predicate allows us to treat
all of them in a uniform manner. We will use the meta-variable α to represent an
arbitrary action description predicate, and allow the action and situation arguments
to be suppressed in a similar way to situation-suppressed uniform formulae.

In preparation for the coming material on extensions to the situation calculus in
Section 2.1.4, let us introduce an action description predicate Legal that identifies
actions that can be legally executed in the real world. In the basic situation calculus,
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it is simply equivalent to Poss:

Legal(a, s) ≡ Poss(a, s)

As shown by the above, it is often useful to define new action description predi-
cates in terms of simpler existing ones, rather than directly in terms of the primitive
fluents of the domain. As long as these definitions are well-founded they can be
expanded down to primitive fluents when constructing the basic action theory.

Foundational Axioms

The foundational axioms Σ ensure that situations form a branching-time account
of the world state. There is a distinguished situation S0 called the initial situation.
Situations in general form a tree structure with the initial situation at the root and
do(a, s) constructing the successor situation resulting when the action a is performed
in situation s. All situations thus produced are distinct:

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2

We abbreviate the performance of several successive actions by writing:

do([a1, . . . , an], s) def= do(an, do(. . . , do(a1, s)))

There is also a second-order induction axiom asserting that all situations must
be constructed in this way, which is needed to prove statements that universally
quantify over situations [89]:

∀P : [P (S0) ∧ ∀s, a : (P (s)→ P (do(a, s)))] → ∀s : P (s)

The relation s @ s′ indicates that s′ is in the future of s and is defined as follows:

¬(s @ S0)

s @ do(a, s′) ≡ s v s′

Here s v s′ is the standard abbreviation for s @ s′ ∨ s = s′. This notion of “in
the future of” can be extended to consider only those futures in which all actions
satisfy a particular action description predicate. We define as a macro the relation
<α for an arbitrary action description predicate α, with the following definition:

s <α s
′ def= s @ s′ ∧ ∀a, s′′ :

(
s @ do(a, s′′) v s′ → α[a, s′′]

)
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It is straightforward to demonstrate that this macro satisfies the following prop-
erties, which are analogous to the definition of @:

¬ (s <α S0)

s <α do(a, s′) ≡ s ≤α s′ ∧ α[a, s′]

The legal situations are those in which every action was legal to perform in the
preceding situation. These are of fundamental importance, as they are the only
situations that could be reached in the real world:

Legal(s) def= S0 ≤Legal s

Initial State Axioms

The set DS0 describes the actual state of the world before any actions are performed.
It is a collection of sentences uniform in S0 stating what holds in the initial situation.
In many domains the initial state can be completely specified, so DS0 is often in a
closed form suitable for efficient automated reasoning.

Note that, unlike [59, 85, 91], we include static facts about the domain in Dbg
rather than DS0 . This is entirely a cosmetic change to allow us to talk about these
static facts separately from the initial database.

2.1.3 Reasoning

An important feature of the situation calculus is the existence of effective reasoning
procedures for certain types of query. These are generally based on syntactic ma-
nipulation of a query into a form that is more amenable to reasoning, for example
because it can be proven without using some of the axioms from D.

Types of Reasoning

In the general case, answering a query about a basic action theory D is a theorem-
proving task in second-order logic (denoted SOL) due to the induction axiom in-
cluded in the foundational axioms:

D |=SOL ψ

This is clearly problematic for effective automated reasoning, but fortunately there
exist particular syntactic forms for which some of the axioms in D are not required.
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If a query only performs existential quantification over situation terms, it can be
answered without the induction axiom (denoted I) and thus using only first-order
logic (FOL) [85]:

D |=SOL ∃s : ψ(s) iff D − {I} |=FOL ∃s : ψ(s)

While this is a substantial improvement over requiring a second-order theorem
prover, it is still far from an effective technique. Effective reasoning requires that
the set of axioms be reduced as much as possible.

In their work on state constraints, Lin and Reiter [66] show how to reduce the task
of verifying a state constraint to a reasoning task we call static domain reasoning,
where only the background axioms need to be considered:

Dbg |=FOL ∀s : φ[s]

Since the axioms in Dbg do not mention situation terms, the leading quantifica-
tion in such queries has no effect – φ will be entailed for all s if and only if it is
entailed for some s. This is a major improvement because universal quantification
over situation terms usually requires the second-order induction axiom. Their work
has shown that this requirement can be circumvented in some cases.

Simpler still are queries uniform in the initial situation, which can be answered
using only first-order logic and a limited set of axioms:

D |=SOL φ[S0] iff DS0 ∪ Dbg |=FOL φ[S0]

We call such reasoning initial situation reasoning. Since the axioms DS0 ∪ Dbg
often satisfy the closed-world assumption, provers such as Prolog can be employed
to handle this type of query quite effectively.

Regression

The principle tool for effective reasoning in the situation calculus is the regression
meta-operator RD, a syntactic manipulation that encodes the preconditions and
effects of actions into the query itself, meaning fewer axioms are needed for the final
reasoning task [85]. The idea is to reduce a query about some future situation to a
query about the initial situation only.

There are two styles of regression operator commonly defined in the literature:
the single-pass operator as defined in [85] which reduces to S0 in a single application,
the the single-step operator as defined in [98] which operates one action at a time.
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We use the single-step variant because it is the more expressive of the two – while
it is straightforward to define the single-pass operator in terms of the single-step
operator, the reverse is not the case.

Regression is only defined for a certain class of formulae, the regressable formulae.

Definition 4 (Regressable Terms). Let σ be an arbitrary situation term, x an arbi-
trary variable not of sort situation, r an arbitrary rigid function and f an arbitrary
fluent function. Then the regressable terms are the smallest set of syntactically-valid
terms satisfying:

ν ::= σ |x | f(ν̄, σ) | r(ν̄)

Definition 5 (Regressable Formulae). Let σ be an arbitrary situation term, x an
arbitrary variable not of sort situation, ν an arbitrary regressable term, R an arbi-
trary rigid predicate, F an arbitrary primitive fluent predicate, and α an arbitrary
action description predicate. Then the regressable formulae are the smallest set of
syntactically-valid formulae satisfying:

ϕ ::= F (ν̄, σ) |α(ν̄, a, σ) |R(ν̄) | ν1 = ν2 | ¬ϕ |ϕ1 ∧ ϕ2 | ∃x : ϕ

Regressable formulae are more general than uniform formulae. In particular,
they can contain action description predicates and may mention different situation
terms. They cannot, however, quantify over situation terms or compare situations
using the @ predicate.

The regression operator is then defined using a series of regression rules such as
those shown below, which mirror the structural definition of regressable formulae.

Definition 6 (Regression Operator). Let R be a rigid predicate, α be an action
description predicate with axiom α(ν̄, a, s) ≡ Πα(a, s) in Dad, and F be a primitive
fluent with axiom F (x̄, s) ≡ ΦF (x̄, s) in Dssa. Then the regression of φ, denoted
RD(φ), is defined according to the following structural rules:

RD(ϕ1 ∧ ϕ2) def= RD(ϕ1) ∧RD(ϕ2)

RD(∃x : ϕ) def= ∃x : RD(ϕ)

RD(¬ϕ) def= ¬RD(ϕ)

RD(α(ν̄, a, σ)) def= RD(Πα(ν̄, a, σ))

RD(F (ν̄, do(a, σ))) def= ΦF (ν̄, a, σ)

RD(F (ν̄, s)) def= F (ν̄, s)

RD(F (ν̄, S0)) def= F (ν̄, S0)
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We have omitted some technical details here, such as the handling of functional
fluents; consult [85] for the details. The key point is that each application of the
regression operator replaces action description predicates with their definitions from
Dad and primitive fluents with their successor state axioms from Dssa, “unwinding”
a single action from each do(a, σ) situation term in the query. If the situation term
is not constructed using do, it is left unchanged.

Since D is fixed, we will henceforth drop the subscript and simply write R for
the regression operator. When dealing with situation-suppressed uniform formulae,
we will use a two-argument operator R(φ, a) to indicate the regression of φ over the
action a. It should be read as a shorthand for R(φ[do(a, s)])−1 using the situation-
suppression operator from Section 2.1.1.

Let us briefly state some important properties of the regression operator. First,
and most importantly, it preserves equivalence of formulae:

Proposition 1. Let ϕ be a regressable formula, then D |= ϕ ≡ R(ϕ)

Any formula uniform in do(a, s) is regressable, and the result is uniform in s:

Proposition 2. Let φ be uniform in do(a, s), then R(φ) is uniform in s

Let R∗ denote repeated applications of R until the formula remains unchanged.
Such applications can transform a query about some future situation into a query
about the initial situation only:

Proposition 3. Let φ be uniform in do([a1 . . . an], S0), then R∗(φ) is uniform in S0

This last property is key to effective reasoning in the situation calculus, as it
allows one to answer the projection problem. To determine whether φ holds in a
given future situation, it suffices to determine whether R∗(φ) holds in the initial
situation. As discussed above, queries uniform in S0 are much easier to answer. The
axioms Dad and Dssa are essentially “compiled into the query” by the R∗ operator.
While an efficiency gain is not guaranteed, regression has proven a very effective
technique in practice [62, 85].

Decidability

Even given the use of regression to reduce the number of axioms required, reasoning
still requires first-order logic and is thus only semi-decidable in general. Practical
systems implemented on top of the situation calculus typically enforce additional
restrictions on the domain in order to gain decidability.

A common restriction is to assume that the Action and Object domains are
finite. This allows quantification over these variables to be replaced with finite
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conjunctions or disjunctions, essentially “propositionalising” the domain [13, 20, 91].
Both static domain and initial situation reasoning can then be performed using
propositional logic, which is decidable. This may also be combined with special-
purpose decision procedures for particular objects in the domain, such as deciding
linear constraints over the integers or reals [91, 93].

A similar, but slightly less onerous restriction, is to ensure that the construction
of function terms is well-founded [13]. This prevents building the arbitrarily-nested
terms from the Herbrand universe that cause non-termination in first-order theorem
provers, again gaining decidability.

Recent work by Gu and Soutchanski [38] has shown how to model some situation
calculus domains using to the two-variable fragment of first-order logic. Since this
fragment is decidable in general, both static domain and initial situation reasoning
are decidable in such domains.

Inductive Reasoning

One class of query that cannot be answered effectively using regression are formulae
that universally quantify over situations. Examples of such queries include verifying
state constraints (“for all situations, the constraint is satisfied”) and determining the
impossibility of a goal (“for all situations, the goal is not satisfied”). The difficulty
here comes from the induction axiom.

Reiter [89] has shown why the induction axiom is necessary to prove statements
that universally quantify over situation terms. This work demonstrates the use of
the axiom in manual proofs, but offers no procedure for answering such queries au-
tomatically. Other work considering inductive reasoning has focused exclusively on
verifying state constraints [11, 66]. While it is possible to automate this verification
in some cases, there are currently no general-purpose tools for effectively handling
queries that universally quantify over situation terms.

It is this limitation, more than any other, that has restricted the situation cal-
culus to synchronous domains. In asynchronous domains agents must account for
potentially arbitrarily-long sequences of hidden actions, which requires universal
quantification over situation terms. In Chapter 6 we develop a new reasoning tech-
nique to help overcome this limitation.

Progression

While regression has proven quite an effective technique in practice, it has an obvious
shortcoming in domains with long histories – the computation required to reason
about the current state of the world increases with each action performed.
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An alternative approach is progression, in which the initial state of the world
DS0 is updated with each action performed, to give a new set of axioms describing
the state of the current situation. Although this increases the upfront complexity
when an action is performed, this work is amortised over many queries about the
updated state. Thielscher [114] makes a compelling case that progression gives better
runtime performance in domains with many actions. Why, then, do we focus only
on regression in this thesis?

The theoretical foundations of progression in the situation calculus were laid out
by Lin and Reiter [67] and come with an important caveat: the progression of a
first-order database is not always first-order definable. This conjecture was recently
proven by Vassos and Levesque [124], who show that while it is possible to define
first-order progressions of a database that are valid for restricted classes of query,
a first-order progressed database cannot be complete in general. As such, work on
progression in the situation calculus has focused on restricted queries or restricted
databases for which first-order progressions exist [68, 123, 125]. By contrast, the
regression operator is sound and complete for answering a broad range of queries.

In this thesis, we develop formalisms and reasoning techniques for problems
which have not been approached before in the situation calculus. Our first priority
must be a sound and complete reasoning tool, for which regression is a good match.
Advanced techniques such a progression are considered future work at this stage.

2.1.4 Extensions

The base language of the situation calculus may seem simplistic, lacking many fea-
tures that would be desirable for modelling rich multi-agent domains. However, it is
possible to significantly enrich the domain features that can be modelled while main-
taining the elegance and simplicity of the base situation calculus. We now discuss
several such extensions that are important in multi-agent domains.

Concurrent Actions

In the basic situation calculus only a single action can occur at any instant. While
suitable for most single-agent domains, this limitation is emphatically not suitable
for multi-agent systems – several actions can easily occur simultaneously if performed
by different agents. Modelling this true concurrency is necessary to avoid problems
with conflicting or incompatible actions. There is also the potential to utilise con-
currency to execute tasks more efficiently. Clearly a solid account of concurrency is
required for reasoning about multi-agent teams.

The work of [65, 83, 93] adds true concurrency to the situation calculus by
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replacing action terms with sets of actions that are performed simultaneously. The
additional sort Concurrent is added to Lsitcalc, and the appropriate axioms for set
theory are added to Dbg. All functions and predicates that take an Action term are
are modified to take a Concurrent term instead. For example, do(a, s) becomes
do({a1, a2, ...}, s). Successor state axioms are modified to test for set membership
rather than equality of action terms. For example, the successor state axiom for
HasObject would become:

HasObject(agt, obj, do(c, s)) ≡ acquire(agt, obj) ∈ c

∨ HasObject(agt, obj, s) ∧ release(agt, obj) 6∈ c

Since it operates solely by replacing formulae with their equivalents, the regres-
sion operator is unchanged by this extension and effective reasoning is still possible.

There is, however, a subtle complication in axiomatising action description pred-
icates such as Poss: interaction between primitive actions. A combination of actions
is not guaranteed to be possible even if each of the individual actions are. For ex-
ample, two agents may not be able to acquire the same resource at the same time.
This is known as the precondition interaction problem and has undergone extensive
research [79, 80, 83]. We make no explicit commitment towards a solution for this
problem. Rather, we assume that the axioms in Dad contain the necessary logic to
account for interaction for all action description predicates.

To avoid unintuitive behaviour, we assume that the domain entails the following
consistency requirements for the empty set of actions:

Definition 7 (Empty Action Consistency). A basic action theory D using concur-
rent actions must entail the following consistency requirements for the empty set of
actions:

D |= ∀s : ¬Legal({}, s)

D |= ∀s : φ[do({}, s)] ≡ φ[s]

Since true concurrency is such an important aspect of multi-agent systems, we
will assume concurrent actions are in use throughout the rest of the thesis.

Time

An explicit notion of time can make coordination between agents easier, as joint
actions may be performed at a particular time. It also allows a richer description of
the world, particularly in domains such as the cooking agents where time can play

22



2.1. THE SITUATION CALCULUS

an important part in tasks to be performed.

The standard approach to time in the situation calculus is that of [82, 83, 93]. An
additional sort Timepoint is introduced, which can be any appropriately-behaved
sequence such as integers or reals. The axiomatisation of timepoints is added to
Dbg, and each action gains an extra argument indicating the time at which is was
performed. The functions time and start are introduced to give the performance
time of an action and the start time of a situation respectively. The start time of
the initial situation may be defined arbitrarily, but is typically taken to be zero.

However, this approach does not integrate cleanly with concurrent actions: it
requires an additional predicate Coherent to ensure that the performance time is
the same for all members in a set of concurrent actions [93]. The legal situations
must be restricted to those in which all actions are coherent.

To avoid this extra complexity, we follow the approach taken in the related
formalism of the fluent calculus [69] and attach the temporal component to the set
of concurrent actions itself, rather than to each individual action. A similar approach
is used in [97] to avoid problems when combining knowledge and time.

Predicates and functions taking terms of sort Action are modified to take Con-

current#Timepoint pairs, e.g. do(c, s) becomes do(c#t, s). The new function
start is added to the foundational axioms with the following definition:

start(do(c#t, s)) = t

We must ensure that successor situations have later start times than their pre-
ceding situations, by modifying the definition of Legal:

Legal(c#t, s) ≡ Poss(c#t, s) ∧ start(s) < t

Introducing timepoints does not affect the regression operator, but does increase
the complexity of reasoning as Dbg now contains the axioms of number theory.
In practice, we limit predicates about time to express only linear relationships,
and employ a linear constraint solver for decidable reasoning over the temporal
component.

Natural Actions

Natural actions are a special class of exogenous actions, those actions which occur
outside of an agent’s control [93]. They are classified according to the following
requirement: natural actions must occur if it is possible for them to occur, unless
an earlier action prevents them. For example, a timer will ring at the time it was
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set for, unless it is switched off. Such actions are used to model the predictable
behaviour of the environment.

Natural actions are identified by the truth of the predicate Natural(a). The
times at which natural actions may occur are specified by the Poss predicate. For
example, suppose that the fluent TimerSet(m, s) represents the fact that a timer is
set to ring in m minutes in situation s. The possibility predicate would entail:

Poss(ringT imer#t, s) ≡ ∃m : [TimerSet(m, s) ∧ t = start(s) +m]

The timer may thus ring only at its predicted time. To enforce the requirement
that natural actions must occur whenever possible, the action description predicate
Legal(c#t, s) is adjusted to ensure that c#t is not legal if natural actions could
occur at some earlier time:

Legal(c#t, s) ≡ Poss(c#t, s) ∧ start(s) < t

∧ ∀a, t′ :
[
Natural(a) ∧ Poss({a}#t′, s) →

(
a ∈ c ∨ t < t′

)]
Thus it is only legal to perform actions c at time t if no natural actions can occur
in s at a time less than t.

Following this intuition, the least natural time point (or “LNTP”) of a situation
is defined as the earliest time at which a natural action may occur [91]. Rather than
adding another axiom, this can be defined using a simple macro:

LNTP(s, t) def= ∃a : [Natural(a) ∧ Poss({a}#t, s)]∧

∀a′, t′ :
[
Natural(a′) ∧ Poss({a′}#t, s)→ t ≤ t′

]
We assume that the theory of action avoids certain pathological cases identified

in [91], so that absence of an LNTP implies that no natural actions are possible.
That is to say, we assume the following is a consequence of the basic action theory:

D |= [∃a, t : Natural(a) ∧ Poss({a}#t, s)]→ [∃t : LNTP(s, t)]

The LNTP is important when planning in the presence of natural actions – one
cannot plan to perform some actions at time t if t is greater than the least natural
timepoint of the current situation. We also define a related concept, the set of
pending natural actions, as the set of all natural actions that are possible at the
least natural time point:

PNA(s, c) def= ∃t : LNTP(s, t) ∧ ∀a : [Natural(a) ∧ Poss({a}#t, s) ≡ a ∈ c]
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Long-Running Tasks

Although all actions in the situation calculus are instantaneous, it is still possible
to model long-running tasks that have a finite duration. They are modelled by
decomposing them into instantaneous beginTask and endTask actions, and a fluent
DoingTask indicating that a task is in progress [83].

In the presence of long-running tasks, a robust account of natural actions is very
important – the endTask action must be natural to ensure that any task that is
initiated eventually terminates at the appropriate time.

Summary

As can be seen from the discussion above, it is possible to enrich the situation
calculus with some very powerful domain features while still maintaining the basic
structure of the language, and retaining regression as the principle tool for effective
automated reasoning.

While we assume concurrent actions are in use through the rest of this thesis, we
shall only refer explicitly to other rich domain features – such as time and natural
actions – when we wish to make a special point about their treatment. By uni-
formly using the predicate Legal to identify actions that can legally be performed
in the world, rather than the base Poss predicate, we ensure that our techniques
are applicable regardless of the particular domain features being used.

2.2 Golog

Golog is a declarative agent programming language that is the standard approach
to specifying complex behaviours in the situation calculus [62]. Testimony to its
success are its wide range of applications and many extensions to provide additional
functionality [17, 21, 27]. For simplicity, we use the general name “Golog” to refer
to the standard family of languages based on this technique, including ConGolog
[21] and IndiGolog [17].

2.2.1 Notation

To program an agent using Golog one specifies a situation calculus theory of action,
and a program consisting of actions from the theory connected by programming
constructs such as if-then-else, while loops, and nondeterministic choice. Table 2.1
lists the standard operators available in various incarnations of the language.

Readers familiar with dynamic logic will recognise some of these operators, but
others are unique to first-order formalisms such as Golog. Many Golog operators are
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Operator Meaning
Nil The empty program
a Execute action a in the world
φ? Proceed if condition φ is true
δ1; δ2 Execute δ1followed by δ2
δ1|δ2 Execute either δ1 or δ2

π(x, δ(x)) Nondet. select arguments for δ
δ∗ Execute δ zero or more times

if φ then δ1 else δ2 Exec. δ1 if φ holds, δ2 otherwise
whileφdo δ Execute δ while φ holds

procP (−→x )δ(−→x )end Procedure definition
δ1||δ2 Concurrent execution
δ1 � δ2 Prioritised concurrency
δ|| Concurrent iteration

Σ(δ) Plan execution offline

Table 2.1: Operators used in Golog and its descendants

nondeterministic and may be executed in several different ways. It is the task of the
agent to plan a deterministic instantiation of the program, a sequence of actions that
can legally be performed in the world. Such a sequence is called a legal execution of
the program.

To get a feel for how these operators can be used, consider some example pro-
grams. Figure 2.1 shows a simple program for Jim to wash the dishes. It makes
use of the nondeterministic “pick” operator to select and clean a dish that needs
washing, and does so in a loop until no dirty dishes remain. The legal executions of
this program are sequences of clean(Jim, d) actions, one for each dirty dish in the
domain, performed in any order.

while∃d : Dirty(d) do

π(d, clean(Jim, d))
end

Figure 2.1: A Golog program for washing the dishes

Figure 2.2 shows a program that we will return to in subsequent chapters, giving
instructions for how to prepare a simple salad. The procedure ChopTypeInto (not
shown) directs the specified agent to acquire an ingredient of the specified type,
chop it, and place it into the indicated bowl. The procedure MakeSalad nondeter-
ministically selects an agent to do this for a lettuce, a carrot, and a tomato. Note
the nondeterminism in this program: the agent assigned to handling each ingredient
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is not specified (π construct), nor is the order in which they should be processed
(|| construct). There is thus considerable scope for cooperation between agents to
effectively carry out this task.

procMakeSalad(dest)
[π(agt, ChopTypeInto(agt, Lettuce, dest)) ||
π(agt, ChopTypeInto(agt, Carrot, dest)) ||
π(agt, ChopTypeInto(agt, Tomato, dest))] ;

π(agt, [acquire(agt, dest) ;
beginTask(agt,mix(dest, 1)) ;
endTask(agt,mix(dest, 1)) ;
release(agt, dest)]) end

Figure 2.2: A Golog program for making a salad

2.2.2 Semantics

The original semantics of Golog were defined using macro-expansion [62]. The macro
Do(δ, s, s′) was defined to be true if program δ could be successfully executed in sit-
uation s, leaving the world in situation s′. However, these semantics could not
support the concurrent execution of two programs and were modified with the in-
troduction of ConGolog [21] to use two predicates Trans(δ, s, δ′, s′) and Final(δ, s)
which are capable of representing single steps of execution of the program.

The predicate Trans(δ, s, δ′, s′) holds when executing a step of program δ can
cause the world to move from situation s to situation s′, after which δ′ remains
to be executed. It thus characterises single steps of computation. The predicate
Final(δ, s) holds when program δ may legally terminate its execution in situation
s. We base our work on the semantics of IndiGolog [17], which builds on ConGolog
[21] and is the most feature-full of the standard Golog variants. The full semantics
are available in the references, but we present some illustrative examples below.

The transition rule for a program consisting of a single action is straightforward
– it transitions by performing the action, provided it is possible in the current
situation. Such a program may not terminate its execution since the action remains
to be performed:

Trans(a, s, δ′, s′) ≡ Poss(a, s) ∧ δ′ = Nil ∧ s′ = do(a, s)

Final(a, s) ≡ ⊥
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The transition rule for a test operator proceeds only if the test is true, leaving
the situation unchanged, and likewise cannot terminate execution until the test has
been satisfied:

Trans(?φ, s, δ′, s′) ≡ φ[s] ∧ δ′ = Nil ∧ s′ = s

F inal(?φ, s) ≡ ⊥

Now consider a simple nondeterministic operator, the “choice” construct that
executes one of two alternate programs:

Trans(δ1|δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′, s′) ∨ Trans(δ2, s, δ′, s′)

Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)

It is possible for this operator to transition in two different ways - by executing
a step of execution from the first program, or a step of execution from the second
program. Slightly more complicated, but of fundamental important in the next
chapter, is the semantics of the concurrency operator:

Trans(δ1||δ2, s, δ′, s′) ≡ ∃γ : Trans(δ1, s, γ, s′) ∧ δ′ = (γ||δ2)

∨ ∃γ : Trans(δ2, s, γ, s′) ∧ δ′ = (δ1||γ)

Final(δ1||δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

This rule specifies the concurrent-execution operator as an interleaving of com-
putation steps. It states that it is possible to single-step the concurrent execution of
δ1 and δ2 by performing either a step from δ1 or a step from δ2, with the remainder
γ left to execute concurrently with the other program

Clearly there are two notions of concurrency to be considered in the situation
calculus: the possibility of performing several actions at the same instant (true con-
currency), and the possibility of interleaving the execution of several programs (in-
terleaved concurrency). Baier and Pinto [5] have modified ConGolog to incorporate
sets of concurrent actions in an attempt to integrate these two forms of concurrency.
However, their semantics may call for actions to be performed that are not possible
and can also produce unintuitive program behaviour in some cases. A key aspect of
our work in Chapter 3 is a robust integration of these two notions of concurrency.

We have omitted many details here that are not relevant to this thesis, such as
the second-order axioms necessary to handle recursive procedure definitions. We
will denote by Dgolog the standard axioms defining Trans and Final [17, 21].
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Algorithm 1 The Golog/ConGolog Execution Algorithm for program δ

Find a situation s such that:

D ∪Dgolog |= ∃s : Do(δ, S0, s)

for each action in the resulting situation term do
execute that action

end for

2.2.3 Execution Planning

Planning an execution of a Golog program δ can be reduced to a theorem proving
task as shown in equation (2.1). Here Trans∗ indicates the standard second-order
definition for the reflexive transitive closure of Trans.

D ∪Dgolog |= ∃s, δ′ :
[
Trans∗(δ, S0, δ

′, s) ∧ Final(δ′, s)
]

(2.1)

A constructive proof of this query would produce an instantiation of s, a situa-
tion term giving a sequence of actions constituting a legal execution of the program.
These actions are then executed one-by-one in the world. Since the program remain-
ing after termination is often not important, the macro Do is re-defined in terms of
Trans and Final to specify only the resulting situation:

Do(δ, s, s′) def= ∃δ′ : Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

In the original Golog and in ConGolog this forms the entirety of the execution
planning process, as these variants require a full legal execution to be planned before
any actions are performed in the world. This is referred to as offline execution. The
Golog execution algorithm is presented in Algorithm 1.

By contrast, IndiGolog allows agents to proceed without planning a full termi-
nating execution of their program, instead searching for a legal next step a in the
current situation σ such that:

D ∪Dgolog |= ∃a, δ′ : Trans∗(δ, σ, δ′, do(a, σ))

This next step is then performed immediately, and the process repeats until a
terminating configuration is reached. This is referred to as online execution. The
IndiGolog execution algorithm is presented in Algorithm 2.

In order to incorporate planning into this execution algorithm, IndiGolog intro-
duces an explicit “search” operator Σ(δ), which can only make a transition if the
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Algorithm 2 The IndiGolog Execution Algorithm for program δ

σ ⇐ S0

while D ∪Dgolog 6|= Final(δ, σ) do
Find an action a and program δ′ such that:

D ∪Dgolog |= Trans∗(δ, σ, δ′, do(a, σ))

Execute the action a
σ ⇐ do(a, σ)
δ ⇐ δ′

end while

program is guaranteed to eventually terminate successfully:

Trans(Σ(δ), s, δ′, s′) ≡ ∃s′′, δ′′ : Trans(δ, s, δ′′, s′) ∧Do(δ′′, s′, s′′) ∧ δ′ = Σ(δ′′)

This approach gives the programmer powerful control over the amount of non-
determinism in the program, and the amount of planning required to find a legal
execution. It also allows the programmer to avoid planning over sensing actions,
which can cause an exponential blowup in planning complexity. Sensing actions are
simply performed outside the scope of a search operator.

2.2.4 Extensions

There have been a wide range of Golog extensions developed which we will not
consider in this thesis. Among them have been extensions to include decision-
theoretic [12] and game-theoretic aspects [28, 29], additional control operators such
as partially-ordered sequences of actions [6] and hierarchical task networks [34, 111],
synchronisation between the individual programs of a team of agents [26], and ac-
counting for continuous change and event triggering [36].

While we will not consider these Gologs in any detail, we do note that each has
involved relatively modest extensions to the underlying situation calculus theory
and/or the semantics of the Golog operators, and as a result there has been rich
cross-pollination between these different works. We therefore hope that our work
may in turn be combined with some of these extensions to provide an even richer
formalism.

2.3 Epistemic Reasoning

Reasoning about the knowledge of an agent and the combined knowledge of a group
of agents, referred to in general as epistemic reasoning, is a fundamental aspect of
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reasoning and planning in multi-agent domains. An excellent explanation of the
importance of epistemic reasoning is the classic paper by Halpern and Moses [39].

2.3.1 Epistemic Reasoning in General

The standard semantics of epistemic reasoning are given by the Kripke structures
of modal logic, and are based on the idea of possible worlds. Intuitively, if an agent
is unsure about the state of the world, then there must be several candidate states
of the world that it considers possible. The agent is then said to know a proposition
if it is true in all worlds considered possible. In modal epistemic logics this is
typically written as [Kagt]φ, but we will consistently use the standard situation
calculus notation of Knows(agt, φ, s).

While this works well for a static knowledge base, there is also the question
of how each agent’s knowledge changes over time as actions are performed in the
world. Various formal systems have been devised to represent the interaction be-
tween knowledge and action, including those of Fagin et al. [25], Parikh and Ra-
manujam [74] and Batlag et al. [8]. Recent work on the foundations of epistemic
dynamic logic has shown these different perspectives to be essentially equivalent
[73, 118], and they can be briefly summarised as follows.

A system is considered to have a set of possible events which could occur at any
given instant, and the system state at any time is determined by the sequence of
events that have occurred. For each agent there is some subset of these events that
it is capable of observing, and it thus has a restricted local view of the state of the
system. From the agent’s perspective, the system may be in any one of the states
that would be compatible with its current local view. If some proposition holds in
all such states, then the agent knows that proposition.

We will not comment on these related formalisms for epistemic reasoning in any
further detail, except to note that the approach we develop in Chapters 7 and 8
deliberately parallels the intuitions and notation of this wider field.

2.3.2 Epistemic Reasoning in the Situation Calculus

Epistemic reasoning was first introduced to the situation calculus by Moore [71], and
formalised extensively by Scherl and Levesque [98] whose paper is now the canonical
reference. Their work has been extended to include concurrent actions [97] and
multiple agents [106]. Our work further extends these techniques.

The semantics of knowledge are based on a reification of the “possible worlds”
semantics of modal logic, using situation terms rather than abstract worlds. A
special fluent K(agt, s′, s) is used to indicate that “in situation s, the agent agt
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considers the alternate situation s′ to be possible”. The macro Knows is then
defined as a shorthand for the standard possible-worlds definition of knowledge,
stating that an agent knows φ when φ is true in all situations considered possible:

Knows(agt, φ, s) def= ∀s′ : K(agt, s′, s)→ φ[s′] (2.2)

Readers familiar with modal logic will recognise K(agt, s′, s) as the situation
calculus analogue of the modal reachability relation Kagt, and the macro Knows as
the equivalent of the modal box operator [Kagt]φ. The definitions of uniform and
regressable formulae are updated to permit statements of the form Knows(agt, φ, σ).

In preparation for developments later in the thesis, we break slightly with stan-
dard situation calculus notation and introduce an additional fluent K0(agt, s′, s)
to model the initial epistemic uncertainty of the agents, with the corresponding
macro Knows0(agt, φ, s) defined in the obvious way. In synchronous domains these
are always equivalent to K and Knows, but we introduce them here to maintain
consistency of the presentation.

To model initial epistemic uncertainty, the foundational axioms Σ are modified
to permit multiple initial situations, identified by the predicate Init(s). S0 then
represents the actual initial situation, while other initial situations represent alter-
natives that the agents consider possible. We have the following straightforward
extensions of the foundational axioms presented in Section 2.1.2:

No situation precedes an initial situation:

Init(s) → ¬(s′ @ s)

Situation terms in general are always rooted at a particular initial situation:

Init(s) → root(s) = s

root(do(c, s)) = root(s)

The definition of legal situations permits any root situation, not just S0:

Legal(s) def= root(s) ≤Legal s

Finally, the initial epistemic uncertainty of the agents is restricted to initial
situations only, so that they initially know that no actions have been performed:

K0(agt, s′, s) → Init(s) ∧ Init(s′)
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With this infrastructure in place, the initial situation axiomsDS0 can now contain
sentences of the form Knows0(agt, φ, S0) specifying what the agents initially know.

Since we intend to replace the standard axioms of knowledge later in the thesis,
we assume that the dynamics of the K fluent are specified in a separate set of axioms
DK , which must be included when reasoning about knowledge queries. While we
defer a detailed discussion of the dynamics of K until Chapter 7, note at this stage
that its behaviour is specified by a successor state axiom like the following:

K(agt, do(a, s′), do(a, s)) ≡ K(agt, s′, s) ∧ Legal(a, s′)

That is, each agent’s knowledge is updated to account for every action that
occurs. The situations considered possible after an action occurrence are the legal
successors of situations considered possible before that action. As various types of
knowledge-producing action are introduced to the situation calculus, the successor
state axiom for K is modified to encode the intended semantics [54, 77, 106–108].

In multi-agent settings, one must also consider group-level knowledge. We briefly
review the various group-level epistemic modalities commonly found in the literature;
an excellent overview and discussion can be found in [39]. Let G be a finite group of
agents. The basic group-level modality is “everyone knows φ”, which is defined as:

EKnows(G,φ, s) def= ∀agt ∈ G : Knows(agt, φ, s)

Since G is a finite set, this can be written equivalently as a finite conjunction:

EKnows(G,φ, s) def=
∧

agt∈G
Knows(agt, φ, s)

To assert more complete knowledge by members of the group, one can say “ev-
eryone knows that everyone knows φ” by nesting EKnows operators. In general we
have “everyone knows to depth n” defined by:

EKnows1(G,φ, s) def= EKnows(G,φ, s)

EKnowsn(G,φ, s) def= EKnows(G,EKnowsn−1(G,φ), s)

The higher the value of n, the stronger an assertion is made about the knowledge
of the group. The strongest group-level modality is “it is common knowledge that φ”.
Intuitively this indicates that everyone knows φ, everyone knows that everyone knows
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φ, and so on ad infinitum. Formally, it can be defined as the infinite conjunction:

CKnows(G,φ, s) def=
∧
n∈N

EKnowsn(G,φ, s)

Equivalently, it can be defined as a fixpoint or transitive closure of the EKnows

relation. Common knowledge is an extremely powerful form of knowledge that has
deep implications for coordinated group behaviour. For example, in the famous
“Coordinated Attack” problem, the proof that the generals cannot coordinate an
attack depends heavily on their inability to obtain common knowledge [39].

As we shall see in Chapter 8, it is surprisingly difficult to reason effectively about
common knowledge, as it is not directly amenable to a standard regression rule. Our
work is the first to provide an effective reasoning procedure for common knowledge
in the situation calculus.

2.4 Related Formalisms

There are a range of related formalisms for reasoning about knowledge, action and
change, which we do not directly consider in this thesis. Most closely related to the
situation calculus are the fluent calculus of Thielscher [115] and the event calculus
of Kowalski and Sergot [50].

The fluent calculus is based explicitly on the use of progression for solving the
projection problem, and so maintains an explicit representation of the state of the
world which is updated as actions are performed. It can be derived from a restricted
variant of the situation calculus by transforming successor state axioms into state
update axioms that explicitly add and remove fluents from the state [116]. Notably,
it is relatively straightforward to interpret Golog programs on top of the fluent
calculus [99]. As discussed in Section 2.1.3, it would be interesting to translate our
regression-based ideas into a progression-based formalism such as this, but we do
not consider it in this thesis.

The event calculus is slightly further removed, in that it contains a single linear
timeline rather than the branching time structure of the situation calculus. This
makes it more suitable for representing some domains and posing some queries, but
less suitable for others; a detailed comparison can be found in [10, 51]. Like the situ-
ation calculus, it has found significant applications in a logical approach to planning
and agent control [104]. One particular strength of the event calculus is in plan-
ning with partially-ordered sequences of events, highlighted by a reimplementation
of Golog using the event calculus that supports partially-ordered plans [24]. We add
a similar ability to the situation calculus in this thesis.
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There is also the family of approaches known as “dynamic epistemic logic”,
which are based on modal logic [8, 118, 119] While these formalisms are typically
propositional rather than first-order, and focus more on reasoning about knowledge
and communication than on modelling a changing dynamic world, there are still
strong similarities with the situation calculus [117]. In Chapter 8 we will adapt
and extend some reasoning techniques from these formalisms to model common
knowledge in the situation calculus.

There have been several attempts to combine the various action formalisms into
a unifying theory of action, including [9, 51, 100, 113], but there is yet to emerge
a clear standard in this regard. In the meantime, we find the notation and meta-
theory of the situation calculus particularly suitable for expressing our main ideas,
and find the Golog programming language to be a particularly powerful and flexible
approach to specifying agent behaviour and programming shared tasks.

It is our hope that the strong underlying similarities between the major action
formalisms will allow the ideas presented in this thesis to find some application or
resonance beyond the specifics of the situation calculus.

2.5 Mozart/Oz

One of the main advantages of the situation calculus and Golog are their straight-
forward implementation as a logic program. As the dominant implementation of the
logic programming paradigm, Prolog is typically used for such implementations. In
this thesis we use Mozart, a multi-paradigm programming system with some unique
features that are particularly suited to our work.

The Mozart system [121] is an implementation of the Oz programming language
[120] with strong support for logic programming and distributed computing. While
a full explanation of its features is well outside the scope of this thesis, we provide
a short introduction to the subset of its features we will be using – in particular,
doing Prolog-style logic programming in Oz. Familiarity with logic programming in
the style of Prolog is assumed.

Terms, variables and unification in Oz work similarly to Prolog, although ar-
guments in compound terms are separated by whitespace rather than a comma.
Predicates are implemented as ordinary procedures, so all clauses for a predicate
must be contained in a single procedure. Figure 2.3 shows an Oz implementation of
a classic Prolog example predicate, naive list reverse.
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proc {Reverse LIn LOut}

case LIn of nil then

LOut = nil

[] H|Ts then Tr in

{Reverse Ts Tr}

{List.append Tr [H] LOut}

end

end

Figure 2.3: Naive List Reverse implemented in Mozart/Oz

Some things to note about this example include:

• The syntax for procedure definition is proc {NameArg . . . } Body end

• The syntax for procedure calls is {NameArg . . . }

• The case statement is used to pattern-match the contents of a variable

• Local variables must be explicitly introduced using the keyword in

• Mozart separates functionality into modules, such as List

Procedures in Oz are deterministic by default, and there is no default search
strategy for exploring different alternatives. Instead, Oz provides independent facil-
ities for creating choicepoints and for exploring procedures that contain choicepoints.
The result is a much more flexible, although sometimes syntactically more cumber-
some, approach to logic programming [94].

The creation of choice points is explicit in Oz, and performed using the choice

keyword. To demonstrate, consider another classic Prolog example: the nondeter-
ministic list member predicate shown in Figure 2.4. In the case of the empty list,
Member simply fails. For a non-empty list, Member explicitly creates a choice point
with two options – either bind E to the head of the list, or bind E to a member of
the tail of the list.

It is at this point that the use of Mozart for logic programming differs most from
Prolog. If the Member procedure is invoked directly, it will suspend its execution
when the choice statement is reached. To resolve the nondeterminism, one must
execute the procedure inside an explicit search object. These objects are responsible
for exploring the various choicepoints until a non-failing computation is achieved.
They operate by executing the procedure in a separate computation space through
which the state of the underlying computation can be managed [101].
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proc {Member E List}

case List of nil then

fail

[] H|Ts then

choice

E = H

[]

{Member E Ts}

end

end

end

Figure 2.4: Nondeterministic List Member implemented in Mozart/Oz

proc {Pair List1 List2 P}

E1 E2

in

{Member E1 List1}

{Member E2 List2}

P = E1#E2

end

proc {AllPairs List1 List2 AllP}

FindP = proc {$ P}

{Pair List1 List2 P}

end

in

AllP = {Search.base.all FindP}

end

Figure 2.5: Finding all pairs in Mozart/Oz

As a demonstration, Figure 2.5 uses the Member procedure to define a procedure
Pairs, which nondeterministically selects a pair of elements from a pair of lists.
The procedure AllPairs then uses the builtin Search.base.all object to find all
solutions from this procedure, returning a list of all possible pairs from the two lists.
By encapsulating the calls to nondeterministic procedures inside a search object,
AllPairs will not expose any choicepoints to code that calls it.

Also of note in Figure 2.5 is the use of a closure over the procedure Pair to create
the one-argument procedure FindP . Search objects work with a one-argument pro-
cedure, which is expected to bind its argument to a result. The dollar symbol is used
to translate a statement (in this case the proc definition) into an expression. The
value that would be bound to the dollar symbol by the statement becomes the return
value of the expression, so FindP = proc {$P} is equivalent to proc {FindP P}.
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proc {P_AllPairs List1 List2 AllP}

functor FindP

import

MyList

export

Script

define

proc {Script P}

E1 E2

in

{MyList.member E1 List1}

{MyList.member E2 List2}

P = E1#E2

end

end

Searcher = {New Search.parallel

init(mango:1#ssh rambutan:2#ssh)}

in

AllP = {Searcher all(FindP $)}

end

Figure 2.6: Finding all pairs in parallel in Mozart/Oz

The power of this decoupled approach to nondeterminism and search becomes
apparent when defining new search strategies, which can then be used to evaluate
any procedure. For example, it is straightforward to implement breadth-first or
iterative-deepening strategies to replace the standard depth-first traversal of the
Search.base object [101].

Coupled with Mozart’s strong support for distributed computing, these pro-
grammable search strategies offer a unique opportunity – it becomes possible to
implement a parallel search object which can automatically distribute work between
several networked machines. Moreover, this parallel search can be applied with-
out modification to any nondeterministic procedure. Mozart comes with a built-in
ParallelSearch object, which is described in detail in [102] and which is our main
motivation for the use of Oz in this thesis.

To demonstrate the power of the approach, consider Figure 2.6, which describes a
parallel-search version of the AllPairs procedure. In this instance we define FindP
as a functor, an Oz abstraction for code that is portable between machines. This
functor imports the module MyList containing the procedures we defined earlier,
and exports a one-argument procedure Script which will be executed by the parallel
search object. The parallel search object Seacher launches one instance of Mozart
on the machine “mango” and two instances on the machine “rambutan”, then is
asked to enumerate all solutions for FindP .
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In Chapter 3 we will use this parallel search object to automatically share the
workload of planning a Golog execution amongst a team of cooperating agents.

As a multi-paradigm programming language with significant research history,
there is much more to Oz than we have described here. However, these brief examples
should be sufficient for a reader well-versed in Prolog to understand the Oz code
used throughout this thesis. For more information and further examples, consult
the general Oz tutorial [41] or the specialised tutorial on logic programming in Oz
[94], which are both available online.
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Chapter 3
MIndiGolog

This chapter develops a Golog variant specifically designed for cooperative execution
in multi-agent domains. Motivated by the “cooking agents” example domain, we
want to allow a team of agents to cooperatively plan and perform the execution of
a shared Golog program. As this chapter will demonstrate, the existing features of
the situation calculus go a long way towards achieving this goal, but are ultimately
limited to execution in synchronous domains.

We begin by integrating three existing extensions to the situation calculus into
the semantics of Golog to better represent the dynamics of a multi-agent team. Key
among these is true concurrency of actions, which is combined with the standard
interleaved concurrency of ConGolog to give a flexible account of concurrent exe-
cution. An explicit notion of time is incorporated to enrich the world model and
to assist in coordination between agents. Finally, the concept of natural actions
is tightly integrated into the language, allowing agents to predict the behaviour of
their teammates and environment. We name the resulting language “MIndiGolog”
for “Multi-Agent IndiGolog”.

In addition to these new Golog semantics, we develop an innovative implementa-
tion of our language using the distributed logic programming features of the Mozart
platform. Utilising the parallel search facility as described in Section 2.5, the agents
can transparently share the workload of planning a program execution. The ability
to utilise off-the-shelf techniques such as parallel search highlights a significant ad-
vantage of building our system on the situation calculus: it has a straightforward
encoding as a logic program.

Concluding the chapter is a discussion of the limitations of this first incarnation
of MIndiGolog, which derive from the effective reasoning procedures of the situation
calculus. Specifically, it can only operate in fully-observable, synchronous domains.
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Subsequent chapters of this thesis develop new extensions to the situation calculus
that work towards overcoming this limitation. So while the semantics and initial
implementation of MIndiGolog are of independent interest, this chapter should also
be seen as motivating the use of the situation calculus in rich multi-agent domains,
and therefore the techniques developed later in this thesis.

The chapter proceeds as follows: Section 3.1 provides some more detailed back-
ground material; Section 3.2 uses the example of the cooking agents to motivate the
changes we will make to the standard Golog semantics; Section 3.3 introduces the
MIndiGolog semantics incorporating time, true concurrency of actions, and natu-
ral actions, and proves the legality of our modifications; Section 3.4 discusses our
implementation in Mozart/Oz and shows an example execution produced using the
MIndiGolog semantics; Section 3.5 discusses the use of Mozart’s parallel search func-
tionality to share the planning workload; and finally Section 3.6 discusses both the
achievements and limitations of this first incarnation of the language.

3.1 Background

There are two basic approaches to the use of Golog in a multi-agent setting. The
first, and most common, is to assign each agent its own individual Golog program.
The behaviour of the overall system is then defined as the concurrent execution of
the individual agent’s programs:

δ = δagt1 || δagt2 || . . . || δagtN

This is the approach followed by TeamGolog [26] and the Cognitive Agents Spec-
ification Language [110], along with earlier work in a similar vein [58]. In such a
setting, the agents do not necessarily cooperate or coordinate their actions, and it
is assumed that any legal execution of the combined agent programs is a possible
evolution of the entire system.

The second approach, and the one we follow here, is to have all agents cooperate
to plan and perform the joint execution of a single, shared program. This program
would typically be the concurrent execution of several shared tasks:

δ = δtask1 || δtask2 || . . . || δtaskN

This is the approach taken by the Golog variant “ReadyLog” developed by Fer-
rein et al. [27] to control the behaviour of a RoboCup soccer team.

The one-program-per-agent approach can be considered a special case of the
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Algorithm 3 The ReadyLog Execution Algorithm for program δ

σ ⇐ S0

while D ∪Dgolog 6|= Final(δ, s) do
Find an action a and program δ′ such that:

D ∪Dgolog |= Trans∗(δ, σ, δ′, do(a, σ))

if the action is to be performed by me then
Execute the action a

else
Wait for the action to be executed

end if
σ ⇐ do(a, σ)
δ ⇐ δ′

end while

shared-task approach, one which does not require coordination or cooperation be-
tween team members. So while we focus exclusively on the cooperative execution of
a shared task in this and subsequent chapters, the techniques we develop are likely
to have application in the case of multiple individual control programs as well.

While Ferrein et al. focus on decision-theoretic planning rather than the rich
domain extensions we consider below, the execution algorithm they have developed
for ReadyLog provides an excellent introduction to the cooperative execution of
Golog programs. It is presented in Algorithm 3.

The aim of the ReadyLog execution algorithm is to allow agents to coordinate
their actions without the need for explicit communication. Each agent is given their
own individual copy of the shared program, and they each independently execute the
IndiGolog planning process to determine the next step of execution. When an agent
finds a next step where the action is to be performed by the agent itself, it executes
the action immediately. When the next action is to be performed by another agent,
it waits for its teammate to execute the action before proceeding to the next step.

Coordination arises in this setting by ensuring that the agents use identical
theorem provers (in the case of [27], identical Prolog interpreters) to determine each
program step, which will generate candidate solutions in the same order for each
agent. So although each agent plans the program execution steps independently,
they are guaranteed to plan the same execution steps and their actions will therefore
be coordinated without needing to communicate.

However, the semantics of ReadyLog remain largely single-agent and do not ad-
dress concerns such as the possibility of performing actions concurrently, sharing the
computational workload of planning, or predicting the behaviour of team members
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and the environment in the face of many concurrently-executing tasks.
The semantics of MIndiGolog that we develop in this chapter follow a similar

approach to ReadyLog, but we focus on incorporating rich domain features such as
concurrency and continuous time. While these features have been added to Golog in-
dividually in existing works [5, 84, 90, 91], our work is the first to provide a combined
integration. We also rectify some subtle problems with the semantics presented in
existing work, to provide a more robust combination of rich domain features.

There are, of course, a variety of other systems and formalisms that could be
used to model and implement domains such as our “cooking agents” example. A
popular choice is to represent tasks using a variant of the Hierarchical Task Networks
formalism, which has been employed in systems such as STEAM [112], SharedPlans
[37], and TAEMS [22].

The potential advantages of Golog over HTN-based approaches are discussed in
[6], where HTN-like constructs are added as operators to the Golog language. They
identify the following advantages: powerful control over and composition of nonde-
terministic operators; a more natural representation of many tasks thanks to com-
mon programming constructs; and a more sophisticated logic of action. This chapter
will add to the list: the ability to utilise off-the-shelf techniques for distributed logic
programming to automatically share the execution planning workload.

The purpose of this chapter, though, is not to propose the MIndiGolog approach
as the ultimate solution for programming cooperative behaviour. Rather, it serves
to highlight the potential of the situation calculus and Golog for both modelling and
implementing rich multi-agent systems.

3.2 Motivation

Recall the “cooking agents” example domain from Chapter 1 – several agents inhabit
a kitchen along with various ingredients and utensils, and they must cooperate to
prepare a meal. A full definition of this domain is given in Appendix C, but the
specific details are not important for the purposes of this this chapter.

Specifying tasks for the cooking agents requires an interesting combination of
features. There is much procedural knowledge about recipes that should be encoded
as precisely as possible, while at the same time there are a lot of details of precisely
who performs which steps, or precisely when they are performed, that should not
be explicitly specified by the programmer.

The Golog family of languages provide a compelling formalism for specifying
tasks in this domain, as the controlled nondeterminism they provide can be used to
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procMakeSalad(dest)
[π(agt, ChopTypeInto(agt, Lettuce, dest)) ||
π(agt, ChopTypeInto(agt, Carrot, dest)) ||
π(agt, ChopTypeInto(agt, Tomato, dest))] ;

π(agt, [acquire(agt, dest) ;
beginTask(agt,mix(dest, 1)) ;
endTask(agt,mix(dest, 1)) ;
release(agt, dest)]) end

Figure 3.1: A Golog program for making a salad

procChopTypeInto(agt, type, dest)
[π(board, IsType(board,Board)? ;

π(obj, IsType(obj, type)? ;
acquire(agt, board) ;
acquire(agt, obj) ;

placeIn(agt, obj, board) ;
beginTask(agt, chop(board)) ;
endTask(agt, chop(board)) ;

acquire(agt, dest) ;
transfer(agt, board, dest) ;

release(agt, board) ;
release(agt, dest)))] end

Figure 3.2: A Golog program for chopping an ingredient

elide certain details from the program while keeping its procedural nature intact.
Consider how we might specify the task of making a simple salad, shown in Figure
3.1. Using the high-level nondeterministic operators of Golog, this program says, in
essence, “somebody chop a lettuce, somebody chop a carrot, and somebody chop a
tomato. Then, somebody mix them together”.

Note that the explicit concurrency operators allow the three ingredients to be
chopped independently, while the nondeterministic “pick” operators allow any avail-
able agent to perform each sub-task. Expanding on this example, the procedure
ChopTypeInto could be specified as shown in Figure 3.2. Here the agent must se-
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lect and acquire an object of the specified type, as well as an available chopping
board. He then places the object on the board, chops it, and transfers it to the
destination container.

Notice that the programs do no specify which agent is to perform which task –
in fact they make no assertions at all about the particular agents operating in the
world. A library of procedures such as this can be combined very flexibly to specify
the behaviour of the cooking agents, and the resulting program could be given to any
team of agents for execution. The agents can prepare several dishes concurrently:

MakeSalad() ||MakePasta() ||MakeCake()

They can even plan to have different dishes ready at different times:

([MakeSalad() ||MakePasta()] ; ?(time < 7 : 30))

|| (MakeCake() ; ?(8 : 15 < time < 8 : 30))

A legal execution of these programs must select appropriate ingredients and
utensils, and ensure that are acquired in an appropriate order, so that it can proceed
to completion without the agent’s actions interfering with each other or coming into
conflict over shared resources. Following the ReadyLog execution algorithm, each
agent plans to avoid such conflict by virtue of finding a legal execution.

In short, the situation calculus and Golog provide an extremely powerful formal-
ism for specifying cooperative agent behaviour in domains such as this.

However, executing these kinds of program using a standard Golog variant is
far from ideal in a multi-agent setting. To illustrate this we have executed the
MakeSalad program using the standard semantics of IndiGolog [17], augmented
with an explicit temporal component in the style of [90]. The resulting execution is
shown in Figure 3.3.

In this domain there are three agents Joe, Jon and Jim. While the resulting
execution is legal, it is suboptimal in several ways. The most obvious problem is
that it does not take advantage of the concurrency inherent in a team of agents.
Only a single agent acts at any one time, while the other agents are idle. Ideally
the execution planner should exploit true concurrency where possible, by calling for
multiple actions to be performed at each timestep.

Another shortcoming of the standard semantics in this setting is that they have
no support for predicting natural actions. This means we must specify unnecessary
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do([acquire(jim lettuce1)] at 1)

do([acquire(jim board1)] at 2)

do([placeIn(jim lettuce1 board1)] at 3)

do([beginTask(jim chop(board1))] at 4)

do([acquire(joe tomato1)] at 5)

do([acquire(joe board2)] at 6)

do([endTask(jim chop(board1))] at 7)

do([acquire(jim bowl1)] at 8)

do([transfer(jim board1 bowl1)] at 9)

do([release(jim bowl1)] at 10)

do([release(jim board1)] at 11)

do([placeIn(joe tomato1 board2)] at 12)

do([beginTask(joe chop(board2))] at 13)

do([acquire(jim carrot1)] at 14)

do([acquire(jim board1)] at 15)

do([endTask(joe chop(board2))] at 16)

do([acquire(joe bowl1)] at 17)

do([transfer(joe board2 bowl1)] at 18)

do([release(joe bowl1)] at 19)

do([release(joe board2)] at 20)

do([placeIn(jim carrot1 board1)] at 21)

do([beginTask(jim chop(board1))] at 22)

do([endTask(jim chop(board1))] at 25)

do([acquire(jim bowl1)] at 26)

do([transfer(jim board1 bowl1)] at 27)

do([release(jim bowl1)] at 28)

do([release(jim board1)] at 29)

do([acquire(jim bowl1)] at 30)

do([beginTask(jim mix(bowl1 1))] at 31)

do([endTask(jim mix(bowl1 1))] at 34)

do([release(jim bowl1)] at 35)

Figure 3.3: Execution of MakeSalad program using IndiGolog semantics

details in our programs, such as including the endTask action in the definition
of MakeSalad. Since these actions are predictable, the planner should incorporate
them automatically – particularly in a multi-agent setting where there may be many
natural actions associated with long-running tasks.

The remainder of this chapter is dedicated to developing a robustly multi-agent
Golog semantics to overcome these issues, as well as an implementation that can
highlight the benefits of this approach.

3.3 Semantics of MIndiGolog

We have integrated three extensions to the situation calculus with the existing se-
mantics of IndiGolog to better model the dynamics of a multi-agent team. These
extensions allow agents to represent time, concurrently-occurring actions, and natu-
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ral actions in a robust way. We use the extensions to the situation calculus discussed
in Chapter 2 to model concurrent actions (Section 2.1.4) and explicit time (Section
2.1.4). The arguments to do will therefore be Concurrent#Timepoint pairs.

Why do we focus on these three extensions in particular? We consider the ability
to reason about true concurrency of actions to be fundamental in planning for multi-
agent domains, if only to ensure that actions cannot come into conflict if performed
concurrently. Once concurrent actions are being considered, it makes sense to then
take advantage of them where possible for concurrent program execution.

Natural actions form an important part of rich multi-agent domains with many
long-running tasks, as the endTask action is a natural action. Since they are entirely
predictable based on the theory of action, we contend that Golog should provide
support for them at the semantic level to relieve the programmer from having to
specify them explicitly.

An explicit temporal component is a prerequisite for supporting natural actions,
and also provides for a much more convincing domain model, particularly with the
cooking agents example domain.

3.3.1 Time

The semantics of IndiGolog are straightforwardly modified to accommodate an ex-
plicit temporal component. We follow the approach of [90, 91], in which the transi-
tion rule for a single-action program is modified to use Legal instead of Poss. Recall
that the original transition rule for this case is:

Trans(a, s, δ′, s′) ≡ Poss(a, s) ∧ δ′ = Nil ∧ s′ = do(a, s)

Modifying this to use Concurrent#Timepoint pairs and Legal, we obtain:

Trans(a, s, δ′, s′) ≡ ∃t : Legal({a}#t, s) ∧ δ′ = Nil ∧ s′ = do({a}#t, s) (3.1)

This basically ensures that the temporal component respects the ordering be-
tween predecessor and successor situations. The key aspect here is not the new
transition rule, but the use of a linear constraint solver to reason about time. The
situations produced by the Golog execution process are not fixed situation terms,
but contain timepoint variables that are constrained relative to each other [90].

For example, consider the following simple program:

placeIn(Jim,F lour,Bowl) ; placeIn(Jim, Sugar,Bowl)
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One output from a temporal Golog execution planner for this program would be:

do({placeIn(Jim, Sugar,Bowl)}#t2, do({placeIn(Jim,F lour,Bowl)}#t1, S0))

Here t1 and t2 are variables giving the execution times of each action. It would
also output the following constraint on this solution:

t2 > t1

This solution thus represents a family of legal executions that respect the tem-
poral ordering on situations. Since we intend for these executions to be performed
cooperatively, the agents must agree in advance on a convention for grounding these
variables, for example by setting them to their smallest possible value. To simplify
the presentation, we have done this in the executions shown throughout the chapter.

3.3.2 Concurrency

To take advantage of true concurrency, we must first allow sets of concurrent actions
to appear in a MIndiGolog execution. The modified Trans clause for primitive
actions shown in equation 3.1 already ensures that sets of concurrent actions are
performed rather than raw action terms.

However, this is clearly not enough to truly exploit the potential for concurrency
in a multi-agent team. As noted by Baier and Pinto [5], the concurrency operator
should be modified to accept a concurrent transition from both programs. The
concurrency semantics they propose for their variant “TConGolog” are shown below:

Trans(δ1||δ2, s, δ′, s′) ≡ ∃γ : Trans(δ1, s, γ, s′)∧ δ′ = (γ||δ2)

∨ ∃γ : Trans(δ2, s, γ, s′) ∧ δ′ = (δ1||γ)

∨ ∃c1, c2, γ1, γ2 : Trans(δ1, s, γ1, do(c1, s))

∧ Trans(δ2, s, γ2, do(c2, s)) ∧ δ′ = (γ1||γ2) ∧ s′ = do(c1 ∪ c2, s)

The first two lines are the standard rules for the concurrency operator, encod-
ing the interleaving of steps from programs δ1 and δ2. The remaining lines permit
the concurrent execution of a transition from both programs. While this modifica-
tion will take advantage of the true concurrency of actions present in multi-agent
domains, it introduces several complications that [5] does not address.

First, precondition interaction means that c1 ∪ c2 may not be possible even if
the individual actions are. The transition clause must ensure that the combination
of the two sets of actions is possible. Another issue arises when two programs can
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legitimately be transitioned by executing the same action. Consider the following
programs which add ingredients to a bowl:

δ1 = placeIn(Jim,F lour,Bowl) ; placeIn(Jim, Sugar,Bowl)

δ2 = placeIn(Jim,F lour,Bowl) ; placeIn(Jim,Egg,Bowl)

Executing δ1||δ2 should result in the bowl containing two units of flour, one unit of
sugar and an egg. However, an individual transition for both programs is c1 = c2 =
{placeIn(Jim,F lour,Bowl)}. Naively executing c1∪c2 to transition both programs
would result in only one unit of flour being added.

Alternately, consider two programs waiting for a timer to ring:

δ1 = ringT imer ; acquire(Jim,Bowl)

δ2 = ringT imer ; acquire(Joe,Board)

Both programs should be allowed to proceed using the same ringT imer occurrence,
because it is an environmental effect rather than a purposeful agent-initiated action.

In simple cases like these, it is easy for the programmer to see the potential for
such undesirable interaction and adjust their programs accordingly. But in more
complex cases with liberal use of nondeterminism, it may not be possible to pre-
dict what actions can potentially be executed concurrently. To avoid unintuitive
(and potentially dangerous) behaviour, concurrent execution must not be allowed
to transition both programs using the same agent-initiated action. Natural actions
can safely transition two concurrent programs.

Taking these factors into account, and including an explicit temporal compo-
nent, we develop the improved transition rule for concurrency in equation (3.2).
The first two lines are the original interleaved concurrency clause from ConGolog,
while the remainder characterises the above considerations to take advantage of true
concurrency.

Trans(δ1||δ2, s, δ′, s′) ≡ ∃γ : Trans(δ1, s, γ, s′)∧ δ′ = (γ||δ2)

∨ ∃γ : Trans(δ2, s, γ, s′) ∧ δ′ = (δ1||γ)

∨ ∃c1, c2, γ1, γ2, t : Trans(δ1, s, γ1, do(c1#t, s)) ∧ Trans(δ2, s, γ2, do(c2#t, s))

∧ Legal((c1 ∪ c2)#t, s) ∧ ∀a : [a ∈ c1 ∧ a ∈ c2 → Natural(a)]

∧ δ′ = (γ1||γ2) ∧ s′ = do((c1 ∪ c2)#t, s) (3.2)
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There are two other Golog operators that relate to concurrency: the prioritised
concurrency operator δ1 � δ2, and the concurrent iteration operator δ||. MIndiGolog
leaves both of these operators unmodified. For the concurrent iteration operator this
is clearly the right thing to do, since its standard semantics are defined in terms of
the base concurrency operator and will automatically inherit our new ability to take
advantage of true concurrency.

For the prioritised concurrency operator, we note that it is mainly used to im-
plement interrupt-handling by blocking the execution of the higher-priority program
until a test condition is satisfied, at which point the lower-priority program is blocked
until the interrupt handler is complete. It makes no sense to allow concurrent exe-
cution of both programs in this case, which would destroy these blocking semantics.

3.3.3 Natural Actions

While planning with natural actions has previously been done in Golog [84], the
programmer was required to explicitly check for any possible natural actions and
ensure that they appear in the execution. We significantly lower the burden on
the programmer by guaranteeing that all legal program executions result in legal
situations, inserting natural actions into the execution when they are predicted
to occur. MIndiGolog agents will thus plan for the occurrence of natural actions
without having them explicitly mentioned in the program. They may optionally be
included in the program as a synchronisation device, instructing the agents to wait
for the action to occur before proceeding.

This is achieved using a new Trans clause for the case of a single action a, as
shown in equation (3.3). If s has an LNTP tn and corresponding set of pending
natural actions cn, a transition can be made in one of three ways: perform a at a
time before tn (fourth line), perform it along with the natural actions at tn (fifth
line), or wait for the natural actions to occur (sixth line). If there is no LNTP, then
c may be performed at any legal time.

Trans(a, s, δ′, s′) ≡

∃t, tn, cn : LNTP(s, tn) ∧PNA(s, cn)∧[
t < tn ∧ Legal({a}#t, s) ∧ s′ = do({a}#t, s) ∧ δ′ = Nil

∨ Legal(({a} ∪ cn)#tn, s) ∧ s′ = do(({a} ∪ cn)#tn, s) ∧ δ′ = Nil

∨ s′ = do(cn#tn, s) ∧ δ′ = a
]

∨ ¬∃tn : LNTP(s, tn) ∧ ∃t : Legal({a}#t, s) ∧ s′ = do({a}#t, s) ∧ δ′ = Nil

(3.3)
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The occurrence of natural actions may also cause test conditions within the
program to become satisfied, so a new Trans clause for the test operator is also
required as shown in equation (3.4). This permits a program consisting of a single
test condition to make a transition if the test is satisfied, or a natural action occurs:

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = Nil ∧ s′ = s

∨ ∃tn, cn : LNTP(s, tn) ∧PNA(s, cn) ∧ δ′ = φ? ∧ s′ = do(cn#tns) (3.4)

A MIndiGolog execution will thus contain all natural actions that will occur,
regardless of whether they were considered explicitly by the programmer. Contrast
this with the standard handling of exogenous events in Golog, which is achieved by
executing a concurrent program that generates exogenous actions:

δmain || (π(a)(Exog(a)? ; a))∗

This allows the program to make legal transitions that contain exogenous actions,
but does nothing to predict what exogenous actions will occur. Our approach allows
the agents to directly predict the natural actions that will occur and automatically
include them in a planned execution. Of course, the standard Golog approach is
still required if there are also unpredictable exogenous actions to be accounted for.

3.3.4 Legality of the Semantics

Let us denote by Dmgolog the standard Golog axioms Dgolog, modified according
to equations (3.2), (3.3) and (3.4). All legal executions of a MIndiGolog program
derived from such a theory of action produce legal situations.

Lemma 1. The semantics of MIndiGolog entail:

D ∪Dmgolog |= ∀s, s′, δ, δ′ : Legal(s) ∧ Trans(δ, s, δ′, s′)→ Legal(s′)

Proof. By induction on the structure of δ. The Trans clauses of equations (3.2),
(3.3) and (3.4) all assert that Legal(c#t, s) before constructing a new situation term
do(c#t, s). The other Trans clauses either assert that s = s′, or set s′ to a new
situation term constructed by one of these three base cases. Since we are given that
s is legal, the lemma holds for each Trans clause in the semantics.
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Theorem 1. The semantics of MIndiGolog entail:

D ∪Dmgolog |= ∀s′, δ, δ′ : Trans∗(δ, S0, δ
′, s′)→ Legal(s′)

Thus, all legal executions of a MIndiGolog program produce legal situations.

Proof. By induction on situation terms. For the base case, S0 is always legal by
definition. Lemma 1 immediately provides legality for the inductive case by the
transitivity of Trans∗.

The MIndiGolog semantics are thus a powerful but robust extension to the stan-
dard semantics of the Golog language family. Our integration of concurrent actions
allows the language to more accurately reflect the concurrency present in multi-agent
teams while ensuring actions are performed in a definite order if they are not legal
to perform concurrently. Natural actions are automatically predicted and inserted
into the execution at appropriate times.

3.4 Implementation

With these new semantics in place, it is now possible to build a multi-agent execution
planning system utilising MIndiGolog to specify the tasks to be performed. We have
followed the style of [17, 21] to build an interpreter for our language in Oz on the
Mozart programming platform [122]. We summarise our implementation below;
details on obtaining the full source code are available in Appendix B.

Programs and actions are represented in Oz as record terms in a similar way to
Prolog data terms. For example, the program:

π(agt, [acquire(agt,Bowl1); acquire(agt, Lettuce1)])

is represented as follows:

pick(agt seq(acquire(agt bowl1) acquire(agt lettuce1)))

Since “do” is a reserved keyword in Oz, we represent situation terms as records
of the form res(C T S). Trans and Final have a straightforward encoding as Oz
procedures, using the case statement to encode each individual clause using pattern
matching, and the choice statement to explicitly introduce choice points. The
following are a selection of the operators as they appear in our implementation:
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proc {Trans D S Dp Sp}

case D of nil then fail

[] test(Cond) then choice {Sitcalc.holds Cond S}

Sp=S Dp=nil

[] Tn = {Sitcalc.lntp S}

Cn = {Sitcalc.pna S} in

Dp=D Sp=res(Cn Tn S)

end

[] seq(D1 D2) then choice D1r in {Trans D1 S D1r Sp}

Dp=seq(D1r D2)

[] {Final D1 S}

{Trans D2 S Dp Sp}

end

[] choose(D1 D2) then choice {Trans D1 S Dp Sp}

[] {Trans D2 S Dp Sp}

end

[] ... <additional cases ommitted> ...

end

end

proc {Final D S}

case D of nil then skip

[] test(Cond) then fail

[] seq(D1 D2) then {Final D1 S}

{Final D2 S}

[] choose(D1 D2) then choice {Final D1 S}

[] {Final D2 S}

end

[] ... <additional cases ommitted> ...

end

end

The calls to Sitcalc.holds etc here perform standard regression-based theorem
proving in the style of Prolog-based Golog implementations [21, 62]. Of particular
interest is our implementation of the concurrency operator, reflecting the new se-
mantics from equation (3.2). First, we introduce a procedure Step which calculates
a series of transitions to produce a single next action:

proc {Step D S Dp Sp}

choice Sp=res(_ _ S) {Trans D S Dp Sp}

[] Dr in {Trans D S Dr S} {Step Dr S Dp Sp}

end

end

Then we can encode the semantics of concurrency using the following case:
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proc {Trans D S Dp Sp}

[] ...

[] conc(D1 D2) then

choice D1r D2r C1 C2 Cu T in

{Step D1 S D1r res(C1 T S)}

{Step D2 S D2r res(C2 T S)}

{LP.neg proc {$} A in

{LP.member A C1} {LP.member A C2}

{LP.neg proc {$} {Domain.isNatural A} end}

end}

{LP.union C1 C2 Cu}

{Sitcalc.legal Cu T S}

Sp=res(Cu T S) Dp=conc(D1r D2r)

[] D1r in {Trans D1 S D1r Sp}

Dp=conc(D1r D2)

[] D2r in {Trans D2 S D2r Sp}

Dp=conc(D1 D2r)

end

[] ...

end

The first option presented by the choicepoint is the case for true concurrency of
actions, while the two other choices represent interleaved concurrency. By putting
the true-concurrency case first, a depth-first search will try to find a concurrent
step before looking for a step from only one of the programs. Using Step instead of
Trans allows this search to consume empty transitions of each program, such as test
conditions, to find a valid concurrent step. This is valid since the empty transitions
consumed by Step are also generated by the interleaved concurrency cases.

These simple implementation details are enough to ensure a high degree of con-
currency in the generated executions, as we shall demonstrate in the next section.

A procedure Do(δ, s, s′) ≡ Trans∗(δ, s, δ′, s′)∧Final(δ′, s′) is defined that deter-
mines a complete legal execution Sp for a given program D. As discussed in Section
2.2.3, this is used to define the semantics of the search operator.

proc {TransStar D S Dp Sp}

choice Dp=D Sp=S

[] Dr Sr in {Trans D S Dr Sr} {TransStar Dr Sr Dp Sp}

end

end

proc {Do D S Sp}

Dp in

{TransStar D S Dp Sp}

{Final Dp Sp}

end
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Our implementation of the search operator avoids recalculating the complete
legal execution by translating it into a direct list of actions to be performed. More
sophisticated implementations can further instrument this case to perform failure
detection and re-planning [57], but we do not include these techniques in our work.

proc {Trans D S Dp Sp}

[] ...

[] search(D1) then Sr Dr in

{Trans D1 S Dr Sp}

{Do Dr Sp Sr}

Dp = dosteps({Sitcalc.toStepsList Sp Sr})

[] dosteps(Steps) then C T Steps2 in

Steps = (C#T)|Steps2

Sp = res(C T S)

Dp = dosteps(Steps2)

[] ...

end

Using this implementation, a team of agents can plan and perform the execution
of a shared MIndiGolog program by following the ReadyLog execution algorithm
from Algorithm 3. First we define procedures to detect program termination and to
plan a next program step, which use the built-in search object to resolve choicepoints:

proc {IsFinal D S B} F in

F = {Search.base.one proc {$ R}

{MIndiGolog.final D S} R=unit

end}

if F == nil then B=false else B=true end

end

proc {NextStep D S Dp Sp}

[Dp#Sp] = {Search.base.one proc {$ R} DpR SpR in

{MIndiGolog.step D S DpR SpR}

R = DpR#SpR

end}

end

The main control loop is then implemented in the procedure Run as shown
below. As in ReadyLog, each agent individually executes this control loop. When
the next step contains an action that is to be performed be the agent, they execute
it at the indicated time. Otherwise, they wait for the actions to be executed by their
teammates before proceeding to the next iteration.
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proc {Run D S}

if {IsFinal D S} then

{Control.log succeeded}

else Dp Sp C T in

try {NextStep D S Dp Sp}

Sp = res(C T S)

T = {Time.min T}

{Control.execute C T}

{Run Dp Sp}

catch _ then

{Control.log failed}

end

end

end

The effect of our new semantics can be seen in Figure 3.4. This shows the
execution generated by our implementation for the MakeSalad program from Figure
3.1, using the new semantics of MIndiGolog in a domain with three agents. Note the
execution of several actions at each timestep, demonstrating the integration of true
concurrency into the language. Since there are three agents but only two chopping
boards, in this execution Jon must wait until a board becomes available at time 12
before he can begin processing his ingredient. This execution is clearly more suited
to a multi-agent domain than that produced by the standard IndiGolog semantics.

do([acquire(jim lettuce1) acquire(joe tomato1) acquire(jon carrot1)] at 1)

do([acquire(jim board1) acquire(joe board2)] at 2)

do([placeIn(jim lettuce1 board1) placeIn(joe tomato1 board2)] at 3)

do([beginTask(jim chop(board1)) beginTask(joe chop(board2))] at 4)

do([endTask(jim chop(board1)) endTask(joe chop(board2))] at 7)

do([acquire(jim bowl1)] at 8)

do([transfer(jim board1 bowl1)] at 9)

do([release(jim bowl1)] at 10)

do([release(jim board1) acquire(joe bowl1)] at 11)

do([transfer(joe board2 bowl1) acquire(jon board1)] at 12)

do([release(joe bowl1) placeIn(jon carrot1 board1)] at 13)

do([release(joe board2) beginTask(jon chop(board1))] at 14)

do([endTask(jon chop(board1))] at 17)

do([acquire(jon bowl1)] at 18)

do([transfer(jon board1 bowl1)] at 19)

do([release(jon bowl1)] at 20)

do([release(jon board1)] at 21)

do([acquire(jim bowl1)] at 22)

do([beginTask(jim mix(bowl1 1))] at 23)

do([endTask(jim mix(bowl1 1))] at 26)

do([release(jim bowl1)] at 27)

Figure 3.4: Execution of MakeSalad program using MIndiGolog semantics
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3.5 Distributed Execution Planning

One powerful feature of Mozart is the ability to use several networked computers
to search for solutions to a logic program in parallel. Since the task of planning
a MIndiGolog execution is encoded as a logic program, this immediately allows a
team of agents to distribute the execution planning workload.

There are non-trivial computational and communication overheads involved in
such a search, so it must be used judiciously. We argue that parts of the program
appearing outside the scope of a search operator are intended for on-line execution,
and so will tend to require little deliberation by the agent. By contrast, program
components enclosed in a search operator are intended to require significant planning
to generate a legal execution. We therefore modify the search operator to perform
distributed execution planning, but leave the rest of the code intact.

To coordinate the parallel search, we designate one agent to be the team leader,
who will be responsible for managing the search process; the choice of agent is arbi-
trary and is simply a coordination device. The code below shows our implementation
of the search operator using parallel search. If the executing agent is the team leader,
it executes the procedure ParallelDo and, when a plan is found, sends the details
to the other members of the team. Subordinate team members simply wait for the
plan to be received before continuing.

proc {Trans D S Dp Sp}

[] ...

[] search(D1) then Sr Dr in

if Control.teamMember == Control.teamLeader then

try

{Trans D1 S Dr Sp}

{ParallelDo Dr Sp Sr}

Dp = dosteps({Sitcalc.toStepsList Sp Sr})

{Control.sendMessage Dp#Sp}

catch failure then

{Control.sendMessage plan_failed} fail

end

else Msg in

{Control.waitForMessage Msg}

if Msg == plan_failed then fail

else (Dp#Sp) = Msg end

end

[] ...

end

Note that this modification is completely transparent to the rest of the imple-
mentation. While some details of sending messages are not shown, the core imple-
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mentation of the ParallelDo procedure is shown below.

{IParallelDo D S Sp}

PDo PSearch Ds Ss Machines

in

Ds = {LP.serialize D}

Ss = {LP.serialize S}

functor PDo

import

MG at ’/path/to/MIndiGolog.ozf’

LP at ’/path/to/LP.ozf’

export

Script

define

proc {Script R}

Dl Sl Spl

in

{LP.unserialize Ds Dl}

{LP.unserialize Ss Sl}

{MG.’do’ Dl Sl Spl}

R = {LP.serialize (Dl#Sl#Spl)}

end

end

% this constructs a record like: init(jim:1#ssh joe:1#ssh)

Machines = {Record.make init Control.agents}

for Agt in {Record.arity Machines} do

Machines.Agt = 1#ssh

end

PSearch = {New Search.parallel Machines}

[(D#S#Sp)] = {LP.unserialize {PSearch one(PDo $)}}

end

This code packages up the task to be performed as a functor, a portable piece of
code that can be shared across the network by all team members. Input terms are
serialised to a textual representation since variables cannot be exported in functor
definitions. It is then a simple matter of creating a new ParallelSearch object that
spans all team members, and asking it for a solution to the functor. When this code
is executed by the team leader, it will utilise the computational resources of all team
members to plan the execution of the enclosed MIndiGolog program.

As a brief demonstration of the advantages provided by this technique, consider
the suggestively-named program “HardToPlan” shown in Figure 3.5. This program
asks the agents to nondeterministically select and acquire objects of a variety of
types, and then tests whether certain specific objects have been acquired. It has
been constructed so that a single bad choice in the early stages of execution planning
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procHardToP lan()
[AcquireType(Joe, Carrot) ;
AcquireType(Jon, Sugar) ;
AcquireType(Jim,Lettuce) ;
AcquireType(Joe, F lour) ;
AcquireType(Jon, F lour) ;
HasObject(Jon,Carrot3)? ;
HasObject(Joe, F lour5)? ;

HasObject(Jon, Sugar4)?] end

procAcquireType(Agt, Type)
[π(obj, IsType(obj, Type)? ;
acquire(Agt, obj))] end

Figure 3.5: A Golog program for which execution planning is difficult

Individual Search Parallel Search Ratio Indiv/Para
Run 1 29.30 13.67 2.14
Run 2 29.21 11.25 2.59
Run 3 29.08 11.61 2.50

Average 29.19 12.17 2.39

Table 3.1: Execution planning times for HardToP lan, in seconds

- for example, having Joe acquire Carrot1 instead of Carrot3 - can invalidate all
choices subsequently made. Planning a legal execution of this program thus requires
a significant amount of backtracking and should benefit greatly from parallelisation.

We used our MIndiGolog implementation to execute Σ(HardToP lan) in two
different ways: using parallel search as described above, and having the team leader
search for a legal execution on its own. The program for team leader Jon was
executed on an AMD Athlon 64 3000+, while the subordinate team members Jim
and Joe each executed on one core an Intel Core2 Duo 1.8 GHz. Three test runs
were performed for both parallel and individual search. The times required to find
a legal execution are shown in Table 3.1 along with the speedup factor achieved by
using parallel search.

These results shown an impressive decrease in execution planning time with the
use of parallel search - close to a factor of three speedup using the computational
resources of three agents. Of course, on programs where execution planning is less
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difficult this advantage will be reduced, but on difficult problems it can clearly
provide a significant benefit.

The ability to implement this distributed execution planning with so little code,
and in a way that is completely transparent to the rest of the implementation,
highlights one of the major advantages of using the situation calculus and Golog – the
ability to encode both the domain and the execution planning problem as a simple
logic program, which is then amenable to off-the-shelf techniques for distributed
logic programming.

3.6 Discussion

Our work in this chapter has integrated several important extensions to the situation
calculus and Golog to better model the dynamics of multi-agent teams. Specifically,
MIndiGolog combines true and interleaved concurrency, an explicit account of time,
and seamless integration of natural actions. As we have shown by comparison to
IndiGolog, it defines legal executions of Golog programs that are much more suitable
for cooperative execution by a multi-agent team.

We have also demonstrated an innovative implementation of MIndiGolog using
Mozart/Oz instead of Prolog. Since the situation calculus and Golog have a straight-
forward encoding as a logic program, the off-the-shelf techniques for distributed logic
programming provided by the Mozart platform can be used to transparently share
the execution planning workload between team members.

The approach presented in this chapter is by no means a complete account of co-
operative execution in multi-agent domains. It pre-supposes the existence of a fixed
team of agents and their mutual commitment to executing a pre-specified shared
task. Our implementation therefore focuses entirely on planning and performing the
execution of such a task, without explicit mental attitudes such as cooperation or
commitment. However, this technique could easily form a component of a larger
multi-agent system based on the situation calculus, such as [48, 110].

The purpose of this chapter is not to propose the MIndiGolog approach as the
ultimate solution for programming cooperative behaviour. Rather, it serves to high-
light the potential of the situation calculus and Golog for both modelling and im-
plementing rich multi-agent systems. Unfortunately, this potential has traditionally
been limited by some restrictions on the effective reasoning procedures of the situa-
tion calculus, and our implementation of MIndiGolog has inherited those limitations.

Most fundamentally, the output of our execution planning process assumes that
the domain is synchronous and that all actions are publicly observable. This as-
sumption is necessary to allow reasoning using standard regression techniques, as it
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means the agents do not need to consider arbitrarily-long sequences of hidden ac-
tions. It also means that simple situation terms suffice as the output of the planning
process; agents have all the information they need to coordinate the performance of
concurrent actions, and to ensure that actions are performed in the correct order.
For example, the execution in Figure 3.4 calls for Jim to release Bowl1 and then
for Joe to acquire it in the next timestep, implicitly assuming that the two agents
are able to coordinate and synchronise these actions.

Consider, by contrast, an asynchronous domain in which some actions are not
public. If Joe is not be able to observe the occurrence of Jim releasing the bowl, he
would not know when to proceed with acquiring it and execution of the plan would
fail. To be sure that the plans produced by our system can be executed in the real
world, we must assume that the agents execute their actions in lock-step and always
know the current state of execution – in other words, that there is some form of
constant synchronisation between the agents.

Another limitation is that MIndiGolog does only linear planning, and has no sup-
port for sensing actions. In the single-agent case the execution of Golog programs
that include sensing actions is well understood [17, 52], but there is no straight-
forward way to adapt these techniques to the implicit coordination scheme used by
MIndiGolog. The difficulty arises from the execution algorithm’s crucial assumption
that all agents have access to the same information. Introducing sensing actions to
MIndiGolog will require more explicit reasoning about coordination based on the
local information available to each agent.

Existing situation calculus techniques for reasoning about the local perspective
of each agent are based on explicit notions of knowledge, as described in Section 2.3.
But even these formalisms are limited to synchronous domains, requiring agents
to always know how many actions have occurred so that standard regression tech-
niques can be applied. The situation calculus currently offers no tools to extend the
MIndiGolog approach into asynchronous domains. The remainder of this thesis is
devoted to developing the foundations for such tools, based on a formal character-
isation of the local perspective of each agent that explicitly deals with the hidden
actions inherent in an asynchronous domain.

While we will revisit the cooking agents again in Chapter 5, our implementation
of a new, asynchronous version of MIndiGolog is still ongoing. At the conclusion
of this thesis, we will discuss the challenges remaining to be faced in bringing our
new techniques for representing and reasoning about asynchronous domains together
with a practical implementation of a system such as MIndiGolog.
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Chapter 4
Observations and Views

This chapter develops an explicit formalisation of the local perspective of each agent,
representing it using concrete terms in the logic, so that we can approach reasoning
and planning in asynchronous domains in a systematic way.

Existing work on multi-agent domains in the situation calculus has left this agent-
local perspective largely implicit; for example, it is customary to introduce different
kinds of sensing or communication actions by directly modifying the axioms that
define the dynamics of knowledge. We choose instead to reify the local perspective
of each agent by explicitly talking about what it has observed, independent of how
this information will be used by the rest of the action theory.

The basic idea is as follows: each occurrence of an action results in an agent
making a set of observations. Every situation then corresponds to a local view for
that agent: the sequence of all its observations, excluding cases where the set of
observations was empty. These form agent-local analogues to standard action and
situation terms, which represent the global state of the world. Allowing the set of
observations to be empty lets us model truly asynchronous domains, in which an
agent’s local view is not always updated when the state of the world is changed.

By having views as explicit terms in the logic, we are then in a position to
ensure that agents only reason and act based on their local information. Having
factored out the precise details of each agent’s local view, we can develop reasoning
techniques and tools that can be applied in a variety of different domains, rather
than depending on any particular details of how actions are perceived by each agent.

To demonstrate the appeal of this decoupling, we show how a variety of domain
dynamics can be modelled using our approach. The techniques we subsequently
develop using this foundation of observations and views - our planning formalism
using joint executions, our account of knowledge with hidden actions, our regression

63



CHAPTER 4. OBSERVATIONS AND VIEWS

rule for common knowledge - can be used unmodified in any of these domains.

The chapter begins with additional background material in Section 4.1, dis-
cussing how an agent’s local information is traditionally modelled in the situation
calculus. We then define the notion of observations and views in Section 4.2, and
discuss how they can be specified within the structure of a basic action theory.
Section 4.3 discusses how some common domain dynamics can be modelled using
observations and views, while Section 4.4 demonstrates the power and flexibility of
the approach by axiomatising more complex domains that have not previously been
approached in the situation calculus. Section 4.5 discusses how agents can reason
using their local view, and Section 4.6 concludes with some general discussion.

4.1 Background

In many single-agent applications of the situation calculus, there is no need to con-
sider the local perspective of the agent – since the agent has complete knowledge
and is the only entity acting in the world, its local information is precisely equivalent
to the global information captured by the current situation term.

If the agent has incomplete knowledge about the state of the world, it may need
to perform sensing actions to obtain additional information [17, 98]. To represent
such actions, a new sort Result is added to Lsitcalc, along with an action description
function SR(a, s) = r that specifies the result returned by each action. The agent’s
local perspective on the world is then given by a history, a sequence of a#r pairs
giving each action performed and its corresponding sensing result.

When sensing actions are used in IndiGolog [17], the agent must plan its ex-
ecution using this history rather than a raw situation term. This is accomplished
without any modifications to the underlying theory of action, by handling the history
as a purely meta-level structure and modifying the way queries are posed.

First, a pair of macros are defined to convert a history into proper sentences of
the situation calculus that capture the information it contains. The macro end gives
the situation term corresponding to a history, while the macro Sensed produces a
formula asserting that each action produced the given sensing result. Let ε be the
empty history, then the definitions are:

end[ε] def= S0

end[h · (a#r)] def= do(a, end[h])

Sensed[ε] def= >

Sensed[h · (a#r)] def= Sensed[h] ∧ SR(a, end[h]) = r
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Then, instead of asking whether a query holds at the current situation σ:

D |= φ[σ]

The agent asks whether the query holds given its current history h:

D |= Sensed[h] → φ[end[h]]

This approach works well for a single agent, but we are aware of no works ex-
tending this meta-level handling of histories to the multi-agent case.

While the meta-level approach of [17] allows an agent to reason based on its
local perspective, it is cumbersome for reasoning about that local perspective. To
determine whether an agent knows that a formula holds in a given situation, we
must explicitly specify the agent’s history of sensing results for that situation, which
may not be available until run-time. This meta-level approach is not suitable for
rich epistemic reasoning, where we may want to reason offline about what the agent
(or a group of agents) will or will not know after a series actions.

This kind of reasoning requires an explicit representation of an agent’s knowledge,
as described in Section 2.3. We will review such epistemic reasoning in more detail
in Chapter 7, where we extend existing approaches to handle asynchronous domains
based on the formalism developed in this chapter. For now we briefly discuss its use
in axiomatising the local perspective of each agent.

The effect of sensing results on an agent’s knowledge is axiomatised in [98] by
directly specifying it in the successor state axiom for the knowledge fluent K. Agents
discard situations that do not agree with the obtained sensing result:

K(agt, do(a, s′), do(a, s)) ≡ K(agt, s′, s) ∧ Legal(a, s′) ∧ SR(a, s′) = SR(a, s)

As a variety of richer domains have been modelled on top of this formalism, their
particular accounts of the local information available to each agent have been spec-
ified by progressively modifying this successor state axiom.

For example, when multiple agents are introduced, the successor state axiom for
K is modified to ensure that an agent knows the results produced by its own actions,
but not by the actions of others [106]. When communication actions are introduced,
the successor state axiom for K is modified to ensure that the agent’s knowledge
is updated to include the communicated information [107, 108]. When concurrent
actions and time are introduced, the successor state axiom for K is modified to
ensure that the agent knows how much time has passed since the last action, while
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not inadvertently learning the real value of the current time unless this was already
known [97].

In these works there is no explicit representation of the local perspective of each
agent – rather, the information each agent receives from an action is specified only in
terms of its effect on the agent’s knowledge. The formalism developed in this chapter
will allow us to decouple the dynamics of knowledge from the specific details of how
each action affects the agent’s local perspective. As we will show in Chapter 7, this
can produce a much more general and robust formalism for knowledge.

The observation-based approach will also allow us to work directly with the
local information available to each agent without needing to make explicit state-
ments about knowledge. For example, when planning the cooperative execution of a
task, we can formulate a reactive plan in which each agent can act based directly on
its local observations, without having to introspectively reason about what it knows.

A related approach to ours is the work by Pinto [81] on axiomatising narratives
in the situation calculus. Here the term “observation” is used in a more general
sense to mean some partial information about the state of the world, such as an
action occurring or a fluent holding at a particular time. These are asserted using
predicates such as occurs(a, t) and holds(F, t), and situations are defined as proper
if they respect the asserted occurs and holds facts. Although the focus of [81] is on
reasoning from a single omniscient perspective, it could easily be extended to reason
about the local perspective of multiple agents.

The crucial difference between [81] and the approach presented in this chapter
is that we provide an explicit axiomatisation not just of observations but of ob-
servability. We provide a complete account of what each agent would observe if
any particular action occurred in any particular state of the world. By virtue of
not having made particular observations, agents in our formalism can conclude that
certain actions cannot have occurred. By contrast, the use of occurs and holds in
[81] specifies only what must have happened, not what cannot have happened. This
distinction will play an important role for effective reasoning for our formalism.

4.2 Definitions

In this section we formally define an explicit representation of the local information
available to each agent, and do so in a manner that is independent of how that
information will eventually be used. Our approach can be seen as a generalisation of
the history-based approach of [17], explicitly representing the information available
to each agent. However, we encode this information as terms in the logic rather
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than in the meta-level reasoning machinery. This allows us to use this explicit local
perspective in more general ways.

We begin by defining the notion of an observation, which is fundamental to the
entire approach. At the simplest level, this is an internal notification that an agent
receives when some action has occurred.

Definition 8 (Observations). An observation is a notification event received by an
agent, making it aware of some change in the state of the world. When an agent
receives such a notification, we say that it “observed”, “made” or “perceived” that
observation.

Since “observation” is quite a loaded term, it is worth re-iterating this point: our
observations are instantaneous events generated internally by each agent in response
to actions occurring in the world. We make no commitment as to how these events
are generated, preferring a clean delineation between the task of observing change
and the dynamics of knowledge update based on those observations.

Since the state of the world may only change in response to some action, obser-
vations can only be made as a result of some action. For simplicity we assume that
agents perceive observations instantaneously, i.e. in the same instant as the actions
that cause them; see Section 4.4.4 for a suggestion on how delayed observations can
be modelled within this framework.

To make this idea concrete, let us introduce an additional sort Observation to
the language Lsitcalc, for the moment without any particular commitment towards
what this sort will contain. We then add an action description function of the
following form to Dad:

Obs(agt, c, s) = o

This function returns a set of observations, and should be read as “when actions c
are performed in situation s, agent agt will perceive observations o”. Using a set of
observations allows an agent to perceive any number of observations in response to an
action occurrence – perhaps several observations, perhaps none. When Obs(agt, c, s)
is empty, the agent makes no observations and the actions c are completely hidden.

The concept of a view follows naturally - it is the sequence of all the observations
made by an agent as the world has evolved.

Definition 9 (Views). An agent’s view in a given situation s is the corresponding
sequence of observations made by the agent as a result of each action in s, excluding
those actions for which no observations were made.

We introduce another sort View consisting of sequences of sets of observations,
with ε being the empty sequence and the functional fluent V iew giving the history
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of observations associated with a particular situation. Since these definitions will
not change from one domain to another, they are added to the foundational axioms:

Init(s) →V iew(agt, s) = ε

Obs(agt, c, s) = {} →V iew(agt, do(c, s)) = V iew(agt, s)

Obs(agt, c, s) 6= {} →V iew(agt, do(c, s)) = Obs(agt, c, s) · V iew(agt, s) (4.1)

Observations and views can be seen as localised analogues of actions and situa-
tions respectively. An action is a global event that causes the state of the world to
change, while an observation is an internal event that causes an agent’s knowledge
of the state of the world to change. Similarly, a situation represents a complete,
global history of all the actions that have occurred in the world, while a view is
an agent’s local history of all the observations it has made. The situation is an
omniscient perspective on the world, the view a local perspective. This distinction
will be fundamental to the new techniques we develop throughout this thesis.

To provide a global account of the results returned by each action, we can de-
fine a history in a similar way to IndiGolog, but represented explicitly as a term
in the language. First, we define the outcome of an action as a mapping from
agents to the observations they made. To represent this mapping we use a set of
Agent#Observation pairs:

Definition 10 (Outcomes). The outcome of an action c is the set of agt#Obs(agt, c)
pairs generated by that action:

Out(c, s) = y ≡ ∀agt, o : agt#o ∈ y ≡ Obs(agt, c, s) = o

Then we can build the global history of a situation as a sequence of actions
paired with their respective outcomes:

Definition 11 (Histories). The history of a situation s is the sequence of ac-
tion#outcome pairs corresponding to each action in s:

Init(s) → History(s) = ε

History(do(c, s)) = h ≡ h = (c#Out(c, s)) ·History(s)

We can also introduce an analogous function Sit that translates from a history
term back into a raw situation:
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Sit(ε) = S0

Sit((c#y) · h) = do(c, Sit(h))

Histories will be useful for planning the cooperative execution of a shared task,
when agents must explicitly reason about both the global state of the system and the
local perspective of each agent. To this end, we introduce some suggestive notation
for accessing the individual observations in an outcome:

Out(c, s)[agt] = o ≡ agt#o ∈ Out(c, s)

To ensure that these definitions operate in an intuitively correct way, we also
need a simple consistency constraint. Just as the empty set of actions is assumed to
never be legal, so we should assume that it generates no observations – clearly the
agents cannot observe anything if no action has taken place. Formally, we impose
the following consistency requirement on basic actions theories containing Obs:

Definition 12 (Observation Causality Requirement). A basic action theory D spec-
ifying the Obs function must ensure that agents do not perceive observations that
are not caused by some action:

D |= ∀agt, s : Obs(agt, {}, s) = {}

The key distinguishing feature of our approach is that the agent’s view excludes
cases where Obs(agt, c, s) is empty, so the agent may not have enough information
to determine how many actions have been performed in the world. As discussed in
Chapter 1, this property is fundamental to modelling truly asynchronous domains.
Mirroring the terminology of [118], we can explicitly define what it means for a
domain to be synchronous in the situation calculus.

Definition 13 (Synchronous Action Theory). A basic action theory D is syn-
chronous if every agent observes something whenever an action occurs:

D |= ∀agt, c, s : Legal(c, s) → Obs(agt, c, s) 6= {}

As we shall see, such domains make reasoning from the local perspective of an
agent significantly easier, as they do not need to consider arbitrarily-long sequences
of hidden actions. Before proceeding with some example definitions of Obs, let us
briefly foreshadow how observations and views will be used in the coming chapters.
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In Chapter 5, we will define a partially-ordered branching action structure to
be generated as the output of the MIndiGolog execution planning process. This
structure, called a joint execution, represents many possible situations that are legal
executions of the program. Since agents can only be expected to act based on their
local information, we will require that if s and s′ are two situations that could be
reached while performing a joint execution, and V iew(agt, s) = V iew(agt, s′), then
the agent’s next action in both situations must be the same. Moreover, if the joint
execution requires an agent to execute some action a2 after another action a1, we will
require that Obs(agt, a1, s) is not empty, so that it will have some local observation
to trigger the performance of a2. These restrictions ensure that the joint execution
can feasibly be carried out by the agents.

In Chapter 7, we formalise the intuition that an agent’s knowledge should be
based only on its local information. So if the agent believes that the world might be
in situation s, then it must also consider possible any other situation s′ such that
V iew(agt, s) = V iew(agt, s′). By decoupling the axiomatisation of knowledge from
the specific details of how each action affects the agent’s local information, we de-
velop a very general and robust formalism that can be applied without modification
in a wide variety of domains.

4.3 Axiomatising Observations

We now show how observations and views can be used to model a variety of com-
mon domain dynamics from the situation calculus literature. We argue that these
axiomatisations intuitively capture the “correct” information in each case, but defer
a formal comparison between our approach and existing axiomatisations until we
have developed our theory of knowledge in Chapter 7.

4.3.1 Public Actions

By far the most common assumption about the observability of actions is that “all
actions are public”, which can be rephrased as “when an action occurs, all agents
will observe that action”. Letting the Observation sort contain Action terms,
this can be captured using the following axiom in the definition of Obs:

a ∈ Obs(agt, c, s) ≡ a ∈ c (4.2)

When sensing actions are included, it is typically assumed that only the perform-
ing agent has access to the sensing results. This can be modelled by extending the
Observation sort to contain Action#Result pairs, and including the following
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in the definition for Obs:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ actor(a) = agt ∧ SR(a, s) = r (4.3)

Note that since Obs is an action description function, technically we must specify
it using a single axiom as described in Section 2.1.2. For the sake of clarity we specify
these two cases independently, and assume that the final axiom defining Obs takes
the completion of the individual cases in the standard way.

It should be clear that these definitions capture the intuition behind this most
common model of action observability. When we develop our new axiomatisation
of knowledge in Chapter 7, we will demonstrate that these definitions provide an
equivalent account to the standard knowledge axioms of Scherl and Levesque [98].

This approach clearly leads to synchronous domains, since an agent’s set of
observations can only be empty if the set of actions is also empty, and the empty
action set is never legal to perform.

4.3.2 Private Actions

Another common model for action observability is to assume that “all actions are pri-
vate”, which can be rephrased as “when an action occurs, only the performing agent
will observe it”. This can be modelled by simply dropping the public-observability
axiom from equation 4.2, leaving the following definition of Obs:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ actor(a) = agt ∧ SR(a, s) = r

As noted in [54], this approach means that agents need to consider arbitrarily-
long sequences of hidden actions which may or may not have occurred, and thus
forego regression as an effective reasoning technique. By explicitly formalising this
situation, we will be in a position provide the first formal account of effective rea-
soning in such asynchronous domains.

4.3.3 Guarded Sensing Actions

While the standard approach to sensing actions has the result SR(a, s) returned
unconditionally, it is also possible to model actions that return sensing information
only when some additional conditions hold in the environment [77]. These can be
modelled in our framework by adding the guard conditions Ψ to the definition of
Obs:

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ actor(a) = agt ∧ SR(a, s) = r ∧Ψ(a, s)
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For example, an action senseφ,ψ that senses the truth of some formula φ when
the guard condition ψ is true would require the following to be entailed by the
definition:

senseφ,ψ#T ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c ∧ φ(s) ∧ ψ(s)

senseφ,ψ#F ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c ∧ ¬φ(s) ∧ ψ(s)

senseφ,ψ ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c ∧ ¬ψ(s)

As noted in [77], guarded sensing actions can create difficulties when axiomatising
the K fluent. The approach we develop in Chapter 7 will show that by explicitly
representing the information returned by the action, rather than defining it implicitly
in the axiom for K, these difficulties are avoided.

4.3.4 Speech Acts

Communication in the situation calculus is traditionally modelled using explicit
communicative actions or “speech acts” [107, 108]. These actions are axiomatised
as per standard actions, but special-case handling is introduced in the axioms for
knowledge in order to model their communicative effects.

Instantaneous communication is modelled using actions such as inform, where
inform(agts, agtr, φ) means the sender agts informs the receiver agtr of the truth
of some formula φ. If we assert that only truthful speech acts are allowed, and all
actions are publicly observable, then this requires no further axiomatisation:

Poss(inform(agts, agtr, φ), s) ≡ φ[s]

The inform action will be included in each agent’s observations whenever it
occurs, from which the agent can conclude that it was possible and thus that the
contained formula holds in the world.

However, this simple approach can lead to third-party agents being aware of what
was communicated, which is often not desirable. In [108] encrypted speech acts are
introduced to overcome this limitation, ensuring that only the intended recipient of
a message is able to access its contents by performing a special decrypt action. While
it would be straightforward to copy this approach in our formalism, the problem it
was introduced to solve no longer exists; we can directly limit the accessibility of
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the message contents to the receiving agent without introducing another action:

inform(s, r) ∈ Obs(agt, c, s) ≡ ∃m : inform(s, r,m) ∈ c

inform(s, r,m) ∈ Obs(agt, c, s) ≡ inform(s, r,m) ∈ c ∧ (agt = r ∨ agt = s)

Here all agents will observe that the communication occurred, but only the sender
and recipient can access the contents of the message.

Non-instantaneous communication can be modelled using a message queue for
each agent with separate send and check actions [54]. The send action adds a
message to the queue, while the check action returns the details of pending messages
as its sensing result. Since this approach uses the standard sensing-result machinery,
it requires no special axiomatisation in our framework.

4.4 New Axiomatisations

From the above examples, it should be clear that our formalism can capture the
information available to each agent under a variety of domain dynamics already
modelled in the situation calculus. We now demonstrate some new axiomatisations
of domains that have not previously been explored in the situation calculus.

4.4.1 Explicit Observability Axioms

Our approach offers a straightforward way to explore the middle ground between
the two extremes of “public actions” and “private actions” discussed in the pre-
vious section. To axiomatise general partial observability of actions, we introduce
a new action description predicate CanObs(agt, a, s) that defines the conditions
under which agent agt would observe action a being performed in situation s. If
CanObs(agt, a, s) is false, then that action will be hidden. We can then define Obs
as follows:

a ∈ Obs(agt, c, s) ≡ a ∈ c ∧ CanObs(agt, a, s)

This permits a great deal of flexibility in the axiomatisation. Consider a domain
in which the agents inhabit several different rooms, and are aware of all the actions
performed in the same room as themselves:

CanObs(agt, a, s) ≡ InSameRoom(agt, actor(a), s)

It is also possible to allow partial observability of sensing results using an analo-
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gous predicate CanSense(agt, a, s) and the following definition of Obs:

a ∈ Obs(agt, c, s) ≡ a ∈ c ∧ CanObs(agt, a, s) ∧ ¬CanSense(agt, a, s)

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ SR(a, s) = r

∧ CanObs(agt, a, s) ∧ CanSense(agt, a, s)

For example, consider an agent waiting for a train who activates a speaker to
determine when it will arrive. The results of this sensing action would provide
information to any other agent within earshot:

CanSense(agt, activateSpeaker(agt2), s) ≡ CloseToSpeaker(agt)

We feel that this formulation provides a good balance between simplicity and
expressiveness; it allows the observability of actions to vary according to the state
of the world, but provides agents with a complete description of each action that
they are capable of observing.

4.4.2 Observability Interaction

Reasoning about observability of concurrent actions raises the potential for observ-
ability interaction, in which some actions produce different observations when they
are performed concurrently with another action. Like the precondition interaction
problem for Poss discussed in Section 2.1.4, we assume that the axiom defining Obs
contains the appropriate logic to handle such interaction. A simple axiomatisation
might have actions being “masked” by the co-occurrence of another action, and
would appear like so:

a ∈ Obs(agt, c, s) ≡ a ∈ c ∧ CanObs(agt, a, s) ∧ ¬∃a′ ∈ c : Masks(a′, a, s)

The important point is that, given an explicit account of the local perspective
of each agent, such interaction can be axiomatised independently of the rest of the
action theory.

4.4.3 Observing the Effects of Actions

In many domains it would be infeasible for an agent to observe all of the details of
a particular action when it occurs, but it may observe some of the effects of that
action. For example, suppose that an agent monitors the state of a light in its
environment, such that it notices it changing from dark to light. While it knows
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that some action must have occurred to produce that effect, it may not be sure
precisely what action took place (e.g. precisely who turned on the light). This can
be modelled by further extending the Observation sort to contain a special “effect
observation” term lightCameOn, and axiomatising like so:

lightCameOn ∈ Obs(agt, c, s) ≡ ¬lightIsOn(s) ∧ ∃agt′ : turnLightOn(agt′) ∈ c

When the light is switched on, each agent’s observation set will contain the term
lightCameOn, and they will be able to deduce that this change has occurred without
necessarily knowing the specific action responsible for the change. This is similar to
the “fluent change” actions proposed by De Giacomo et al. [19], but embedded in
the theory itself rather than generated by the agent when it discovers that it must
update its beliefs.

4.4.4 Delayed Communication

Delayed communication can be modelled using separate send and recv actions. How-
ever, unlike the use of explicit communication channels discussed in the previous sec-
tion, we do not want the receiving agent to have to poll the message queue. Rather,
the recv action should occur automatically some time after the send action.

This is easily modelled by making recv a natural action. The send/recv pair
can then be axiomatised mirroring the standard account of long-running tasks in
the situation calculus. A fluent PendMsg(s, r,m, t) indicates that some message is
pending and will be delivered at time t. We have:

natural(recv(agts, agtr,m))

send(agts, agtr,m) ∈ Obs(agt, c#t, s) ≡ send(agts, agtr,m) ∈ c ∧ agt = agts

recv(agts, agtr,m) ∈ Obs(agt, c#t, s) ≡ recv(agts, agtr,m) ∈ c ∧ agt = agtr

Poss(recv(agts, agtr,m)#t, s) ≡ PendMsg(agts, agtr,m, t, s)

PendMsg(s, r,m, tm, do(c#t, s)) ≡ send(s, r,m) ∈ c ∧ tm = t+ delay(s, r,m, s)

∨ PendMsg(s, s,m, tm, s) ∧ (recv(s, r,m) 6∈ c ∨ t 6= tm)

A send action thus causes the message to become pending, with its delivery
time determined by the functional fluent delay. Once the delay time has elapsed,
the natural action recv will be triggered and the message delivered. The send and
recv messages are observed only by the sender and receiver respectively.
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If the agents have incomplete information about the delay function, this can eas-
ily model domains in which the message delay is unpredictable or even unbounded,
giving asynchronous communication in the style of [39].

4.5 Reasoning from Observations

With these definitions in place, we can now give a principled account of what it
means for an agent to reason using its local information. Recall that in the single-
agent setting of IndiGolog [17] a pair of macros is used to construct a query of the
following form given the agent’s current history h:

D |= Sensed[h] → φ[end[h]]

This depends crucially on the assumption that all actions are publicly observable,
so that the macro end can construct the precise situation term corresponding to
a given history. The resulting query is in a form that can be answered effectively
using the standard regression operator.

We can pose a similar query using the definition of a global history in our frame-
work. First, define a history to be legal if it contains the correct sensing results for
a legal situation:

Legal(h) def= Legal(Sit(h)) ∧History(Sit(h)) = h

Then an appropriate query using the current history h would be:

D |= Legal(h) → φ[Sit(h)]

Since these are no longer macros, but are now actual functions in the logic, this
query is not immediately amenable to standard regression techniques. However,
since a history can always be converted into a unique corresponding situation term,
we can easily provide special-purpose regression rules as follows:

R(φ[Sit(ε)]) def= φ[S0]

R(φ[Sit((c#y) · h)]) def= R(φ, c)[Sit(h)]

These rules mirror the definition of end and preserve equivalence given the def-
inition of the History function. Since Legal and History are ordinary fluents they
can be handled by standard regression rules. Agents can therefore use such a query
to do regression-based reasoning about some hypothetical future state of the world,
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for example for the purposes of planning.

An agent could not, however, answer queries about the actual current state of
the world in this manner. They will not have access to the current history term, and
must instead reason based only on their current view v. Since multiple situations
can result in the same view, the appropriate query would be:

D |= ∀s : V iew(agt, s) = v → φ[s]

Here the agent encounters a problem – this is a much more difficult query in
general. Since it cannot tell how many actions have occurred based on its local
view, it cannot re-write this query into a form suitable for regression. The agent
must instead perform second-order theorem proving, using the induction axiom over
situations, in order to reason based on its local view. The situation calculus currently
offers no tools for effective reasoning about such queries.

However, suppose the domain is synchronous. Then combining Definition 13
with equation (4.1), we can prove that all situations matching a given view will
contain the same number of actions. The agent can therefore construct a query like
the following to reason about the the world using standard regression techniques:

D |= ∀c1, . . . , cn : V iew(agt, do([c1, . . . , cn], S0)) = v → φ[do([c1, . . . , cn], S0)]

Thus in synchronous domains, existing reasoning techniques of the situation cal-
culus can be used by an agent to reason from its own local perspective in much the
same way as in the single-agent case. In asynchronous domains, the induction axiom
is required and no effective reasoning procedures currently exist. This restriction,
more than any other, has limited the use of the situation calculus for modelling
asynchronous multi-agent domains.

As we shall see in the coming chapters, for offline planning we can permit the
agents to reason using the hypothetical global history rather than their local obser-
vations. For richer epistemic reasoning about the current state of the world, we will
require a technique capable of performing inductive reasoning.

4.6 Discussion

In this chapter we have constructed an explicit representation of the local perspec-
tive of each agent, in terms of observations and views. This terminology has been
deliberately chosen to mirror that used in other formalisms where representing this
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local perspective is the norm, such as [39, 74]. As the examples in Sections 4.3
and 4.4 have demonstrated, this approach is able to capture a very wide variety of
domain dynamics in a flexible way.

Some of our axioms in Sections 4.3 and 4.4 may seem rather ad-hoc, but we claim
they are no more or less ad-hoc than the many adjustments made to the axioms
defining the knowledge fluent K to accommodate different kinds of information-
producing action [54, 77, 106–108]. The difference is that these adjustments can
now be made separately from the rest of the theory, rather than in the fundamental
axiom for reasoning about knowledge. This makes our formalism significantly more
elaboration tolerant, a point we will return to in Chapter 7. It also means that for
certain applications, we can reason about an agent’s local view without the overhead
of performing explicit epistemic reasoning.

Of course, we also pay a price for this extra expressive power: representational
complexity. The theory of action must contain an explicit axiomatisation of the
Observation sort and of our new Obs function. There is something of a tradition
in the situation calculus of doing as much as possible at the meta-level, adding to
the theory itself only when necessary [62]. As we will demonstrate in the remainder
of this thesis, the advantages provided by our explicit representation of each agent’s
local perspective more than compensate for the added complexity it introduces to
the theory of action.

From the perspective of the rest of the thesis, the key contribution of this chapter
is to provide a uniform representation formalism. The domain-specific observability
dynamics can now be specified independently from the rest of the theory. By “fac-
toring out” the details in this way, we are in a position to construct formalisms and
reasoning techniques that do not make any assumptions about action observability.
In particular, we can explicitly represent and reason about asynchronous domains.
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Chapter 5
Joint Executions

This chapter constructs a new representation for the actions to be performed by a
team of agents during the cooperative execution of a shared task. Dubbed joint ex-
ecutions, they are partially-ordered branching sequences of events. Joint executions
allow independent actions to be performed independently, while using each agent’s
local view to ensure that synchronisation is always possible when required.

The output of the standard Golog execution planning process is a raw situation
term; a complete, ordered sequence of all actions that are to be performed. This
is suboptimal for generating and representing plans in an asynchronous multi-agent
setting in three ways:

• it does not permit branching to utilise information obtained at run-time

• it enforces a strict execution order on actions that are potentially independent,
requiring inter-agent synchronisation when it is not actually necessary

• it requires a strict execution order on actions that may be unobservable, de-
manding inter-agent synchronisation that is not actually feasible

As we have demonstrated in Chapter 3, restricting the domain to be synchronous
and completely known lets the agents make effective use of raw situation terms for
planning. In asynchronous domains with incomplete knowledge they are no longer
sufficient, and the Golog execution planner is required to generate a much richer
representation of the actions to be performed.

To build such a representation, we take inspiration from a model of concurrent
computation known as prime event structures, which are partially-ordered branch-
ing sequences of events [72]. A joint execution is defined as a particular kind of
prime event structure that is rich enough to capture the concurrent execution of
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independent actions and can branch on the results of sensing actions. We use our
explicit account of an agent’s local view to identify joint executions that can feasibly
be executed based on the local information available to each agent at runtime.

Joint executions are formalised in a way that translates well into an implementa-
tion. They can be built up one action at a time in much the same way as ordinary sit-
uation terms. If the theory of action meets some simple restrictions, joint executions
can also be reasoned about using standard regression techniques. We demonstrate
an implementation that performs offline execution planning for an asynchronous,
partially observable domain, and discuss the challenges faced when attempting a
cooperative online execution in such domains.

Joint executions thus allow us to represent the actions that a team of agents are
to perform in service of some shared task, without requiring constant synchronisation
between the agents, and without assuming that agents know all the actions that have
been performed, while utilising existing reasoning methods and planning machinery.
This is a significant increase in power over existing approaches to planning for multi-
agent teams in the situation calculus.

The chapter proceeds as follows: after some more detailed background informa-
tion in Section 5.1, we formally define and axiomatise joint executions in Section
5.2. Section 5.3 then characterises the Golog execution planning problem in terms
of joint executions rather than raw situation terms, and Section 5.4 identifies a re-
stricted kind of joint execution that can be reasoned about effectively using standard
regression techniques. In Section 5.5 we present an overview of our new MIndiGolog
execution planner that generates joint executions, and show some examples of its
output. Finally, Section 5.6 concludes with some general discussion and an outline
of our ongoing work in this area.

5.1 Background

The above discussion highlights three important properties of a plan representa-
tion formalism intended for use in asynchronous multi-agent domains: it must be
partially-ordered to allow agents to operate independently, branching to allow in-
formation to be collected at run-time, and feasible to execute based on the local
information available to each agent. While each of these aspects have been studied
in isolation in the situation calculus, our work is the first to combine them into a
single formalism that is suitable for asynchronous multi-agent domains.
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5.1.1 Partial Ordering

There has been little work on partial-order planning in the situation calculus, most
likely because the use of situation terms heavily biases the reasoning machinery
towards totally-ordered sequences of actions. While Baral and Son [6] allow the
programmer to specify a partial order on actions by adding operators to the Golog
language, the actual plans produced by their system are still ordinary situation
terms. One exception is [86], which extends the situation calculus with explicit
“aspects” and allows partial ordering between actions that affect different aspects
of the world state. By contrast, we seek to leverage the existing meta-theory of the
standard situation calculus.

Partial-order planning is the mainstay of the closely-related event calculus for-
malism [50]. In this formalism, actions are represented as occurring at specific times,
rather than in a specific order as in the situation calculus. Constraints placed on
the relative occurrence times of actions then determine a partial ordering. Shana-
han [103] has shown that abductive theorem proving in the event calculate generates
partially-ordered plans, and the mechanics of the theorem prover naturally mirror
various concepts from the goal-based partial-order planning literature, such as con-
flicts, threats and links [75].

The close similarities between the situation and event calculi are well understood,
as are the advantages of the event calculus when working with partially-ordered ac-
tion sequences [10]. Indeed, it is possible to implement a Golog interpreter on top
of the event calculus, and the execution plans it generates are partially-ordered sets
of actions [24]. Perhaps we should simply adopt a formalism such as the event cal-
culus that is naturally partially-ordered, rather than trying to construct a partially-
ordered representation on top of the naturally sequential situation calculus?

Having a partial-order representation is important, but it is not the complete
picture. While we don’t want the agents to have to synchronise their actions unnec-
essarily, we also need to ensure the converse: that when an explicit ordering between
actions is necessary, the required synchronisation is actually feasible based on the
local information available to each agent. It is not clear how techniques such as [24]
would extend to the asynchronous multi-agent case.

By taking advantage of our explicit account of the local information available
to each agent, the formalism developed in this chapter enables this pair of dual
requirements - that some actions don’t need to be ordered, while other actions
cannot be ordered - to be captured in an elegant way. Moreover, we do not need to
step outside the bounds of existing situation calculus theory, and can utilise existing
regression techniques for effective automated reasoning.
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5.1.2 Branching

Several single-agent formalisms based on the situation calculus have introduced some
form of branching into the structures returned by the planner, including the con-
ditional action trees of of sGolog [52] and the branching IndiGolog plans of [95].
These structures typically branch based on the truth or falsehood of test conditions
included in the program. For example, the structural definition of conditional action
trees in [52] includes the following branching case:

c = [φ, c1, c2]

This instructs the agent to execute the sub-tree c1 if φ is true and the sub-tree
c2 if φ is false. An alternate approach, exemplified by the “robot programs” of Lin
and Levesque [64], is to have the plan branch directly on the results returned by
actions rather than on a test condition. Branching on the binary result of a sensing
action is represented in this formalism by the following structure:

branch(action, δ1, δ2)

Here the agent continues execution with program δ1 if the action returns true,
and with δ2 if the action returns false. Plans that branch directly on the results of
actions are typically longer, but easier for the agent to execute reactively since it
does not need to introspect its knowledge base to decide a test condition.

5.1.3 Feasibility

To allow an agent to execute a plan that depends on information collected at run-
time, it is not sufficient to simply introduce branching into the plan representation
formalism. One must also ensure that, at execution time, the agent will always know
which branch of the plan to take. For example, suppose this simple branching plan
will provably achieve a goal:

if φ then action1 else action2

The agent can only execute this program if it knows whether or not φ holds;
otherwise, although one of the branches is guaranteed to achieve the goal, the agent
does not know which branch to take. Feasibility is typically guaranteed by including
sensing actions to ensure that the test conditions become known when needed:

senseφ ; if φ then action1 else action2
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This requirement that an agent “knows how” to execute a plan is formalised by
various notions of epistemic feasibility, including those of [4, 55, 56, 64, 95].

One approach to ensuring feasibility, embodied by [4, 55, 95], is to represent plans
by arbitrary programs formulated in a control language such as Golog. One then
semantically characterises the class of epistemically feasible programs, using direct
assertions about the knowledge of each agent at each stage of execution. While this
allows for potentially very rich, very succinct plans, it is not clear how to systemat-
ically generate an epistemically feasible plan using such a general characterisation.

Another approach, advocated by [61, 64] and used in the implementation section
of [95], is to restrict the structure of plans so that they are always epistemically
feasible. For example, the “robot programs” of [64] are restricted to simple operators
such as sequencing, branching and looping:

action

seq(δ1, δ2)

branch(action, δ1, δ2)

loop(branch(action, δ, exit))

These programs do not contain test conditions, but rather branch and loop di-
rectly according to the sensing results returned from each action. There is therefore
no potential for confusion when executing such programs; they are essentially equiv-
alent to a kind of finite automaton that can be executed reactively. Nevertheless,
Lin and Levesque [64] show that these programs are universal, in the sense that any
achievable goal can be achieved by suitable a robot program. We are not aware of
any work extending this approach to represent programs intended for cooperative
execution by a team of agents.

These existing notions of epistemic feasibility can be broadly characterised as
knowing what. At each stage of execution, each agent must know what its next
action is. In synchronous domains with public actions, as typically studied in the
situation calculus, this is sufficient to ensure the feasibility of executing a plan.

In asynchronous domains it is not enough for an agent to know what its next
action is; it must also know when that action should be performed. For example,
suppose that the following simple plan provably achieves a goal:

action1(agt1) ; action2(agt2)

In a synchronous domain this plan can be executed directly. But suppose the
domain is asynchronous, and agt2 is unable to observe the occurrence of action1.
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Since agt2 has no way of knowing whether or not action1 has been performed yet,
it will not know when to perform action2 and the plan cannot be executed.

In this chapter we ensure plan feasibility by restricting the structure used to
represent plans, in an approach similar to [64] but without looping constructs. We
use the explicit account of an agent’s local view developed in the previous chapter
to ensure that each agent will always have enough information to determine what
action to perform next, and when to perform it.

5.1.4 Event Structures

To tackle cooperative execution in a multi-agent setting, we have adopted a model
of concurrent computation known as event structures [72]. The particular variant
we are interested in are prime event structures, which are defined as follows.

Definition 14 (Prime Event Structure). A prime event structure is a four-tuple
(V, γ,≺,⊕) where: V is a set of events; γ is a function assigning a label to each
event; ≺ is the precedence relation, a strict partial order on events; ⊕ is the conflict
relation, a binary symmetric relation indicating events that are mutually exclusive.

The labels assigned by γ give the action associated with each event. By using a
labelling scheme rather than identifying events directly with actions, multiple events
can result in the same action being performed. The precedence relation restricts the
order in which events can occur, so that if e1 ≺ e2 then e1 must occur before
e2. The conflict relation allows the structure to represent branching, by having the
occurrence of some events preclude the occurrence of others.

Figure 5.1 shows a simple example of a prime event structure. The arrows
represent the precedence relation, so in this diagram we have e1 ≺ e3 ≺ e7, but
e3 6≺ e4. The conflict relation is represented using a dotted line, so we have e2⊕ e3
and only one of these two events is permitted to occur. Conflict is also inherited
through the precedence relation, so e6⊕ e7 in this diagram.

Figure 5.1: An example Prime Event Structure.
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As it can be cumbersome to specify ≺ and ⊕ in their entirety, we will instead
specify only the direct enablers and alternatives for each event, denoted by ens(i)
and alts(i) respectively. Construction of (≺,⊕) from (ens, alts) is a straightforward
transitive closure. Indeed, it only the enablers and alternatives that are represented
explicitly in Figure 5.1, by arrows and dotted lines respectively.

A configuration is a sequence of events consistent with ≺ in which no pair of
events conflict. Each configuration represents a potential partial run of execution
of the system. Event structures thus form a directed acyclic graph of the events
that could occur during execution of the system. As shown in [88], these structures
are a canonical representation of a variety of formalisms for representing concurrent
execution, and it is straightforward to execute them in a purely reactive fashion.

5.2 Joint Executions

This section defines joint executions as a restricted kind of prime event structure
suitable for representing the actions of a team of agents in an asynchronous domain.
We begin with a high-level intuitive description to motivate these structures, and
then formally define them using a set of axioms to be included in the theory of
action D. Since we intend for agents to synthesise joint executions as the output of
a planning process, they must exist as concrete terms in the logic.

5.2.1 Motivation

To make things more concrete, consider again the “cooking agents” example do-
main from Chapter 3 and the MakeSalad program shown in Figure 3.1. In a
completely-known, synchronous domain, the execution found for this program by
our MIndiGolog interpreter was a linear sequence of concurrent actions as shown in
Figure 3.4 on page 57.

Let us now suppose that the cooking agents domain is asynchronous, and all
actions other than release and acquire are private. The execution found by a
MIndiGolog interpreter for such a domain cannot assume that the agents per-
form their actions in lock-step. Rather, it should allow the agents to process
their respective ingredients independently, synchronising their actions only on the
release/acquire sequence necessary to gain control of shared utensils.

An appropriate partially-ordered representation of the actions to be performed
for MakeSalad would then look something like the structure shown in Figure 5.2.
For simplicity, we do not consider time or natural actions in this chapter, and have
collapsed the “mix” and “chop” tasks into primitive actions. Without expanding on
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the details at this stage, it should be clear that this structure captures the same basic
workflow as the synchronous execution of MakeSalad from Chapter 3, but without
imposing a strict ordering between the independent actions of different agents.

Indeed, Figure 5.2 is the joint execution produced for the MakeSalad program
by our new execution planner detailed in Section 5.5, although with certain details
suppressed for brevity. It may be helpful to keep this structure in mind as we develop
the formal definitions contained in this section.

Figure 5.2: Joint Execution for the MakeSalad Program
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5.2.2 Intuitions

We define a joint execution as a special kind of prime event structure as follows:

Definition 15 (Joint Execution). A joint execution is a tuple (A,O, ens, alts, γ,<)
where: action events A represent actions to be performed; outcome events O repre-
sent possible outcomes of actions; (A∪O, ens, alts, γ) forms a prime event structure
with precedence relation ≺; < is a total order on events that is consistent with ≺.

A joint execution contains two disjoint sets of events: action events A represent-
ing the actions to be performed, and outcome events O representing the possible
outcomes of each action. For each action event i ∈ A, its enablers ens(i) is a set
of outcome events, its alternatives alts(i) is empty, and its label γ(i) is the action
to be performed. For each outcome event i ∈ O, ens(i) is a single action event for
which it is a possible outcome, alts(i) is the set of all other outcome events j such
that ens(j) = ens(i), and γ(i) is an outcome as produced by the Out(a, s) function
for the action γ(ens(i)).

Each action event thus represents a single action to be performed, which enables
several alternative outcome events corresponding to the potential results returned
by that action; since the action can only produce one actual outcome when it is
executed, the enabled outcome events are all mutually conflicting. Each of these
outcome events can then enable further action events, and so forth.

A simple example of a joint execution is shown in Figure 5.3, again using the
“cooking agents” example domain. Here elliptical nodes are action events and box
nodes are the resulting outcome events. The action checkFor senses the presence
of a type of ingredient, returning either T or F , and thus producing two conflicting
outcome events. In this example the agent Jim senses for the availability of eggs,
and if this returns true he acquires one; otherwise, he acquires a tomato. Meanwhile
agent Joe acquires a lettuce, independent of the actions Jim is performing.

Figure 5.3: A simple joint execution.
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Since we are explicitly considering concurrent actions, there are many different
possible ways that the events in this structure could translate into action occurrences.
The independent actions checkFor(Jim,Egg) and acquire(Joe, Lettuce1) could be
performed in either order, or even concurrently.

These structures are clearly much richer than ordinary situation terms, as they
permit branching and partial-ordering between actions. Still, they correspond to sets
of ordinary situation terms in a straightforward way. Recall that a configuration is a
partial run of execution of a prime event structure. Clearly any configuration ending
in an outcome event corresponds to a unique situation term and also a unique history
term, as it is a sequence of alternating actions and their outcomes.

We will call a set of unordered, non-conflicting outcome events a branch. A
branch identifies a set of partial runs of the joint execution. In Figure 5.3, the sets
{O3}, {O1, O3} and {O5, O3} are examples of branches. A leaf is a special case
of a branch, where every event is either in the leaf, conflicts with something in the
leaf, or precedes something in the leaf; it thus represents potential terminating runs
of the joint execution execution. In Figure 5.3 there are two leaves, {O3, O4} and
{O3, O5}, generated by the two alternate outcomes of the checkFor action.

A history of a branch is a history term (as defined in Chapter 4) that can be
generated by performing actions and observing outcomes from the joint execution
until all events in the branch have occurred. By these definitions, the set of histories
of all leaves gives every possible history that could be produced by performing the
joint execution through to a terminating configuration.

A joint execution has one additional component over a standard prime event
structure: a total order on events < that is consistent with the partial order ≺
induced by the enabling relation. We call this the canonical ordering, and it allows
any branch to be unambiguously translated into a single canonical history. When
we come to use joint executions for planning, we will use the canonical history to
avoid having to reason about all the (potentially exponentially-many) histories of
each leaf. The canonical ordering is essentially arbitrary; in practice it is determined
by the order of insertion of events into the structure.

5.2.3 Structural Axioms

We introduce new sorts Event and JointExec to Lsitcalc, and will collect the
axioms defining joint executions in a separate axiom set Dje. Events are opaque
identifiers with which a joint execution associates a label, a set of enablers, and
a set of alternatives. In practice we identify events with the integers, although
our definitions require only a total ordering relation over events. Labels are either
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Action or Outcome terms. A joint execution is then a term containing:

• a set of events, which are opaque ids having total order <

• a mapping from each event to a label, which is either an action or an outcome

• a mapping from each event to its enablers, a set of lower-numbered events

• a mapping from each event to its alternatives, a set of events

We will use the function jexec as a constructor for joint execution terms, specifying
each of the four features above as an argument, and using sets of key#value pairs
to represent a mapping as in the previous chapter.

First, we require a unique names axiom to specify that a joint execution is
uniquely defined by its four components, and a domain closure axiom to specify
that all joint executions are constructed in this way. Assuming the variables are
restricted to appropriate sorts by Lsitcalc, the following axioms suffice:

∀ex : ∃es, ls, ns, as : ex = jexec(es, ls, ns, as)

jexec(es, ls, ns, as) = jexec(es′, ls′, ns′, as′) ≡

es = es′ ∧ ls = ls′ ∧ ns = ns′ ∧ as = as′

We introduce four functions to access the components of a joint execution:

events(ex) = es ≡ ∃ls, ns, as : ex = jexec(es, ls, ns, as)

lblmap(ex) = ls ≡ ∃es, ns, as : ex = jexec(es, ls, ns, as)

ensmap(ex) = ns ≡ ∃es, ls, as : ex = jexec(es, ls, ns, as)

altsmap(ex) = as ≡ ∃es, ls, ns : ex = jexec(es, ls, ns, as)

We also define the following shortcut accessors to get the value from each map-
ping for a particular event i:

lbl(ex, i, l) ≡ i#l ∈ lblmap(ex)

ens(ex, i, ns) ≡ i#ns ∈ ensmap(ex)

alts(ex, i, as) ≡ i#as ∈ altsmap(ex)

For notational convenience we will often write these as functions, e.g. ens(ex, i) =
ns rather than ens(ex, i, ns), but this should be understood as an abbreviation since
not every joint execution will contain every event.
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We must also define the precedes and conflicts relations in terms of enablers and
alternatives. These will be written as binary infix operators ≺ex and ⊕ex respec-
tively. Since they are transitive closures they require a second-order axiomatisation.
First, the precedence relation is defined as a simple transitive closure over enablers:

∀P, ex, i, j : [(i ∈ ens(ex, j) → P (i, j)) ∧ (∀k : P (i, k) ∧ k ∈ ens(ex, j)→ P (i, j))]

→ (P (i, j)→ i ≺ex j)

Then we can define the conflict relation by specifying that i ⊕ex j if they are
alternatives to each other, or they have conflicting predecessors:

∀P, ex, i, j : [(i ∈ alts(ex, j) → P (i, j))

∧
(
∀i′, j′ : P (i′, j′) ∧ i′ �ex i ∧ j′ �ex j → P (i, j)

)]
→ (P (i, j)→ i⊕ex j)

Next we need axioms defining our terminology of branches and leaves. A branch
is a set of unordered non-conflicting outcome events:

Branch(ex, br) ≡ ∀i, j ∈ br : IsOutcome(lbl(ex, i)) ∧ IsOutcome(lbl(ex, j))

∧ ¬(i⊕ex j) ∧ i 6≺ex j ∧ j 6≺ex j

A leaf is defined as a special case of a branch, so that every event in the joint
execution is either in the leaf, precedes something in the leaf, or conflicts with
something in the leaf:

Leaf(ex, lf) ≡ Branch(ex, lf)

∧ ∀i ∈ events(ex) : i ∈ lf ≡ ¬(∃i′ ∈ lf : i⊕ex i′ ∨ i ≺ex i′)

Finally, we say a joint execution is proper if it respects the basic structural
intuitions we discussed in the previous section. Every event must be proper according
to its type, and events cannot be enabled by higher-numbered events:

Proper(ex) ≡ ∀i ∈ events(ex) : ProperAct(ex, i) ∨ ProperOut(ex, i)

∧∀i, j : (i ∈ events(ex) ∧ j ∈ ens(ex, i) → j < i)

Note that this does not result in a loss of expressivity, since we we want event
i to precede event j, then j cannot also precede i and we simply give j the higher
event number. This restriction will play an important role in Section 5.4.
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An action event is proper if it has no alternatives, enables at least one outcome
event, and is enabled by a branch. Restricting the enablers to be a branch ensures
that they do not contain any redundant or conflicting information.

ProperAct(ex, i) ≡ IsAction(lbl(ex, i))

∧Branch(ex, ens(ex, i)) ∧ alts(ex, i) = {} ∧ ∃j : ens(ex, j) = {i}

An outcome event is proper if it is enabled by a unique action event, and has as
its alternatives the set of all other events enabled by that action.

ProperOut(ex, i) ≡ IsOutcome(lbl(ex, i))

∧∃j : ens(ex, i) = {j} ∧ IsAction(lbl(ex, j))

∧∀k : (k ∈ alts(ex, i) ≡ ens(ex, k) = {j} ∧ k 6= i)

These definitions enforce the basic structure of a joint execution according to the
intuitions discussed in the previous section, but do not constrain it to be something
that could actually be performed in the world – for example, outcomes can be
enabled by actions that will never actually produce that outcome. Like situation
terms, we focus first on getting the appropriate structure, and then specify additional
conditions that joint executions must satisfy in order to be legal in the real world.

5.2.4 Performing Events

We introduce a predicate Perform that axiomatises how events from a joint execu-
tion can be performed. Since we explicitly consider concurrent actions, this predicate
selects a set of action events to be performed:

Perform(ex, esa, eso, ex′) ≡ esa 6= {} ∧ eso 6= {}

∧∀i : (i ∈ esa → IsAction(lbl(ex, i)) ∧ ens(ex, i) = {})

∧∀i : (i ∈ eso → ∃j : ens(ex, i) = {j} ∧ j ∈ esa)

∧∀i : (i ∈ esa → ∃j : j ∈ eso ∧ ens(ex, j) = {i})

∧∀i, j : (i ∈ eso ∧ j ∈ eso → ¬(i⊕ex j))

∧∀i :
(
i ∈ events(ex′) ≡ i 6∈ esa ∧ i 6∈ eso ∧ ¬∃j : (j ∈ eso ∧ i⊕je j)∧

)
∧∀i, lb :

(
i#lb ∈ lblmap(ex′) ≡ lbl(ex, i) = lb ∧ i ∈ events(ex′)

)
∧∀i, as :

(
i#as ∈ altsmap(ex′) ≡ alts(ex, i) = as ∧ i ∈ events(ex′)

)
∧∀i, ns :

(
i#ns ∈ ensmap(ex′) ≡ (ens(ex, i)− eso) = ns ∧ i ∈ events(ex′)

)
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The first four lines of this definition select esa and eso as sets of action and
outcome events respectively. The events in esa are any subset of the action events
in the joint execution that have no enablers, and are therefore possible to perform.
The set eso contains one outcome event enabled by each event in esa.

The remaining four lines specify how the events remaining in the joint execution
are updated: events that conflict with the performed events are removed, and the
performed events are removed from all lists of enablers.

As an example, consider again the simple joint execution shown in Figure 5.3.
The possible values of esa#eso generated by Perform for this joint execution are:

{A1}#{O1}

{A1}#{O2}

{A2}#{O3}

{A1, A2}#{O1, O3}

{A1, A2}#{O2, O3}

These correspond to all potential next steps of execution of this structure. The
Perform predicate is clearly quite non-deterministic, permitting any subset of the
enabled events to be performed; the different choices it can make correspond to
different potential orderings of events when performing the joint execution.

5.2.5 Histories

Every branch identifies a family of potential partial runs of the execution, which are
given by the branch’s histories. The predicate History constructs a branch history
by recursively performing events that do not conflict with the branch, until all events
in the branch have been performed. This predicate depends on Perform to identify
an enabled set of action events esa and outcome events eso, the labels of which are
translated into action and outcome terms c and y respectively.

History(ex, br, h) ≡ b = {} ∧ h = ε

∨
(
∃ex′, h′, br′, esa, eso, c, y : Perform(ex, esa, eso, ex′)

∧∀i, j : (i ∈ br ∧ j ∈ (esa ∪ eso) → ¬(i⊕ex j))

∧∀a : (a ∈ c ≡ ∃i : i ∈ esa ∧ lbl(ex, i) = a)

∧∀agt, o : (o ∈ y[agt] ≡ ∃i : i ∈ eso ∧ o ∈ lbl(ex, i)[agt])

∀i :
(
i ∈ br′ ≡ i ∈ br ∧ i ∈ events(ex′)

)
∧History(ex′, br′, h′) ∧ h = h′ · (c#y)

]
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The second and third lines of this definition select sets esa and eso that do not
conflict with the given branch. The fourth line constructs the concurrent action
c as the union of each action in the set esa, while the fifth line constructs the
corresponding outcome y as the agent-wise union of the outcomes in the set eso.
Such pairs c#y are repeatedly selected until every event in the branch is performed.

Clearly, if there are many unordered events then there are many potential histo-
ries for a given branch; in fact there may be exponentially-many histories in general.
In Section 5.4 we show how to avoid reasoning about each history individually, which
is crucial if these structures are to be of practical use. Instead, we reason about only
the canonical history, the unique history obtained by performing events in the strict
order determined by the < relation:

CHistory(ex, br, h) ≡ b = {} ∧ h = ε

∨
(
∃ex′, h′, br′, esa, eso, c, y : Perform(ex, esa, eso, ex′)

∧∃i : esa = {i} ∧ ∀j ∈ events(ex) : i < j

∧∀i, j : (i ∈ br ∧ j ∈ (esa ∪ eso) → ¬(i⊕ex j))

∧∀a : (a ∈ c ≡ ∃i : i ∈ esa ∧ lbl(ex, i) = a)

∧∀agt, o : (o ∈ y[agt] ≡ ∃i : i ∈ eso ∧ o ∈ lbl(ex, i)[agt])

∀i :
(
i ∈ br′ ≡ i ∈ br ∧ i ∈ events(ex′)

)
∧History(ex′, br′, h′) ∧ h = h′ · (c#y)

]
For convenience, we also define a predicate Sit that gives the situation terms

corresponding to the branch histories:

Sit(ex, br, s) ≡ ∃h : History(ex, br, h) ∧ Sit(h) = s

From these definitions it should be clear that joint executions constitute a plan of
action that can be executed reactively in the world. It is simply a matter of picking
some subset of the enabled actions, executing them and obtaining the correspond-
ing outcomes, then rolling the joint execution forward according to the Perform
predicate. The set of histories of all leaves of a joint execution gives every possible
situation that could be reached by performing it in the world.

Of course, this simple account of performing a joint execution assumes public
observability of all actions and outcomes. For a team of agents to be able to feasibly
execute it based only on their local information, we must enforce some additional
restrictions on the structure of a joint execution.
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5.2.6 Feasible Joint Executions

Since we intend for joint executions to be performed reactively by a team of agents
in an asynchronous environment, we must formalise the relationship between the
global histories of a joint execution and each agent’s local view of those histories.
First, we define the V iew function over a history in the obvious way:

V iew(agt, ε) = ε

y[agt] = {} → V iew(agt, (c#y) · h) = V iew(agt, h)

y[agt] 6= {} → V iew(agt, (c#y) · h) = y[agt] · V iew(agt, h)

A branch can generate a view if one of its histories corresponds to that view:

GeneratesV iew(ex, br, agt, v) ≡ ∃h : History(ex, br, h) ∧ V iew(agt, h) = v

Let actor(ex, i) be the agent responsible for performing an action event i. Then that
event is enabled by a view if there is a history of its enablers that can generate that
view for the performing agent:

EnabledByV iew(ex, i, agt, v) ≡

actor(ex, i) = agt ∧ GeneratesV iew(ex, ens(ex, i), agt, v)

Since an agent’s view does not have complete information, EnabledByV iew iden-
tifies events that the agent might be required to perform based on its local infor-
mation. It is not sufficient to precisely identify a particular branch, and therefore
cannot be used to determine for certain whether any particular event should be
performed.

To ensure the feasibility of performing a joint execution based on each agent’s
local information, we must assert two additional structural restrictions to ensure
each agent can always determine the action it is to perform.

The first restriction corresponds to the idea of knowing when to perform an
action. If an action event i is enabled by an outcome event j, then j must not
be hidden from the agent performing i. Otherwise, it has no way of enforcing the
required ordering between the two events. This requirement is formalised by:

KnowsWhen(ex) def=

∀i, j ∈ events(ex) : IsAction(lbl(ex, i)) ∧ j ∈ ens(ex, i)

→ lbl(ex, i)[actor(ex, i)] 6= {}
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Figure 5.4: A joint execution that violates the KnowsWhen restriction

Figure 5.5: A joint execution that violates the KnowsWhat restriction

Figure 5.4 shows an example of a joint execution that does not meet this re-
quirement. This plan calls for Jim to place an egg in the bowl, and then for Joe
to mix the bowl’s contents. However, since Joe cannot observe the occurrence of
Jim’s action, he cannot enforce the ordering between these two events.

The second restriction corresponds to the idea of knowing what action to perform.
For any given view v, there may be multiple branches with a history that could
generate that view, and the agent has no means of knowing precisely which branch
has been performed in the world. We require that if an event is enabled by a view,
then all branches that could generate that view enable a similar event:

KnowsWhat(ex) def=

∀agt, v, i, br : EnabledByV iew(ex, i, agt, v) ∧GeneratesV iew(ex, br, agt, v) →

∃j : ens(ex, j) = br ∧ lbl(ex, i) = lbl(ex, j)

While the agent may not know precisely which event is enabled, its local information
is enough to determine the specific action that it is to perform. Figure 5.5 shows an
example of a joint execution that does not meet this requirement. This plan calls for
Jim to check for the availability of eggs, then for Joe to acquire an appropriate in-
gredient depending on whether they are available. But since Joe cannot distinguish
between outcome events O1 and O2 after he observes checkFor(egg), he doesn’t
know what action to perform and the plan cannot be executed.

We say a joint execution is feasible if it meets both of these restrictions:

Feasible(ex) def= KnowsWhat(ex) ∧KnowsWhen(ex)
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5.2.7 Legal Joint Executions

So far, we have not restricted joint executions to correspond to any sort of legal run
of execution. A joint execution may have action events enabling outcome events
that they would never produce under the given theory of action. It may call for
actions to be performed in situations where they are not legal, or allow actions to
be performed concurrently that could be in conflict.

To avoid such undesirable cases, we identify legal joint executions as ones that are
constrained enough to be performed in the real word. We will say that a particular
leaf of a joint execution is legal if every history of that leaf is legal:

Legal(ex, lf) def= ∀h : History(ex, lf, h) → Legal(h)

This ensures that the leaf is constrained enough to prevent precondition interac-
tion between independent action events, that its outcome events are correct for their
corresponding actions, etc. However, the agents will generally not have enough in-
formation to determine whether a particular leaf is legal, since this would imply that
they already know what sensing results will occur. We call an entire joint execution
legal if is proper and contains a legal leaf:

Legal(ex) def= Proper(ex) ∧ ∃lf : Leaf(ex, lf) ∧ Legal(ex, lf)

This definition does not require that we establish which leaf is legal, only that
we are able to prove that some leaf must be legal. In practise this would be done by
enumerating the possible outcomes of each action. Since the leaves of a joint exe-
cution represent all its possible terminating configurations, this requirement means
that a legal joint execution can legally be performed to completion in the world.

The definition is also permissive, in that there may be leaves of the joint execution
that are provably never be legal. Since the outcomes along these leaves will not occur
in reality, the agents will never follow them at execution time. This permissiveness
will therefore not affect an agent’s ability to carry out the plan in practice.

5.2.8 Summary

This section has formally defined a joint execution, a partially-ordered branching
action structure that we claim is particularly well suited for representing the actions
to be performed by a team of agents in service of a shared task. The partially-
ordered nature of joint executions allows them to explicitly account for inter-agent
synchronisation of actions in the face of partial observability, while their branching
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nature allows them to account for incomplete information that must be augmented
with runtime sensing results.

In asynchronous domains, where raw situation terms cannot feasibly be executed
in the world, joint executions are an ideal alternative as a plan representation struc-
ture for use by the Golog execution planning process. In the next section we identify
precisely what such a planning process would entail.

5.3 Planning with Joint Executions

With the above definitions and axioms in place, we are now in a position to plan the
cooperative execution of a shared Golog program using joint executions rather than
raw situation terms. For the moment we focus on offline execution planning, in the
style of the original Golog and ConGolog. Recall that the semantics of execution
planning in Golog involve finding a situation term s satisfying:

D ∪Dgolog |= ∃s : Do(δ, S0, s)

Before extending this query to search for a joint execution, notice an important
consequence of our definitions: two events can occur in either order if and only if they
can also occur concurrently. Since the standard Golog/ConGolog semantics do not
permit true concurrency, they would force all events to be ordered and we would gain
no benefit from using joint executions. We must therefore adopt the concurrency
semantics of MIndiGolog from Chapter 3, which permit true concurrency of actions.

The execution planning problem then reduces to the task of finding a legal,
feasible joint execution such that for every leaf, if that leaf is legal, then it constitutes
a legal execution of the program:

D ∪Dmgolog ∪ Dje |= ∃ex : Legal(ex) ∧ Feasible(ex)∧

∀lf : Leaf(ex, lf) ∧ Legal(ex, lf) → [∀s : Sit(ex, lf, s)→ Do(δ, S0, s)] (5.1)

This query neatly captures dual soundness and completeness requirements. For
soundness, it requires that for every leaf of the joint execution, if that leaf is legal
then it will be a legal execution of the program δ. For completeness, it requires that
there must in fact be some leaf that is legal, so the joint execution can actually
be performed in the world. The joint execution must contain enough branching to
account for any incomplete knowledge the agents have about the state of the world.

Algorithm 4 presents a simple modification of the Golog offline planning algo-
rithm that can be used by each agent to plan the execution of a shared program δ
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Algorithm 4 Offline Execution Algorithm using Joint Executions

v ⇐ ε
Find a joint execution ex such that:

D ∪Dmgolog ∪ Dje |= ∃ex : Legal(ex) ∧ Feasible(ex)∧
∀lf : Leaf(ex, lf) ∧ Legal(ex, lf) → [∀s : Sit(ex, lf, s)→ Do(δ, S0, s)]

while ex contains action events to be performed by me do
Find an action a such that

D ∪Dmgolog ∪ Dje |= ∃i : EnabledByV iew(ex, i, agt, v) ∧ lbl(ex, i) = a

if there is such an action then
Execute action a

end if
Wait for a new observation o
v ⇐ o · v

end while

and then perform it in the world. A restricted version of this algorithm is used by
our implementation that will be described in Section 5.5.

Since this algorithm is to be executed independently by each agent in the team,
it must identify actions to perform using only the agent’s local view. We restrict
the joint execution to be feasible so that the EnabledByV iew query is sufficient to
identify what action to perform next. If we did not have this restriction, Algorithm
4 would not be correct.

If we turn our attention to online execution in the style of IndiGolog, things are
not so straightforward. Although we have not presented the axioms for doing so, it
is simple enough to extend the leaves of a joint execution one action at a time in the
style of the IndiGolog execution algorithm presented in Algorithm 2. The difficulty
comes in trying to coordinate this process across multiple agents when they have
differing knowledge about the state of the world.

To demonstrate the issues involved, consider the hypothetical, incorrect online
execution algorithm presented in Algorithm 5, which mirrors the ReadyLog execu-
tion algorithm used by our first MIndiGolog implementation. Since joint executions
are a branching structure, the agent must extend each leaf of the joint execution
with a new step of execution of the program; if any leaf cannot be extended then
execution will potentially fail. To avoid this the agent discards leaves that it knows
are not legal before planning the next step of execution.

However, the implicit coordination scheme used by ReadyLog and MIndiGolog
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Algorithm 5 Hypothetical (Incorrect) Online Execution Algorithm

v ⇐ ε
ex ⇐ jexec({}, {}, {}, {})
while δ is not final according to my current view v do

Discard any leaves of ex incompatible with v
Extend each leaf of ex with a legal step of δ
Find an action in ex that is enabled by v
if there is such an action then

Execute that action
end if
Wait for a new observation o
v ⇐ o · v

end while

depends on all agents generating the same “next step” at every iteration. It is
therefore incorrect for the agent to discard leaves based only on its local information
– it must retain any leaves that its teammates could still consider possible, in order
to guarantee that they generate the same plan. Worse, it must also consider that
its teammates will retain leaves that they think it could still consider possible, and
so-on ad infinitum.

The difficulty here is the well-known correspondence between coordination and
common knowledge [39]. In order to extend this execution algorithm to the case of
incomplete information, the agents must plan based on what is commonly known at
each step of execution, rather than based on their own individual view. Unfortu-
nately the situation calculus currently offers no tools for reasoning about common
knowledge, not even in synchronous domains.

Coordinating the online execution of a shared Golog program in asynchronous
domains thus requires more explicit reasoning about the knowledge of each agent,
and the common knowledge of the team. In the coming chapters of this thesis we
will explore the foundations for such reasoning, but we are yet to incorporate it into
our implementation. Our joint-execution based MIndiGolog planner is therefore
currently limited to offline execution planning.

5.4 Reasonable Joint Executions

While joint executions can clearly provide a powerful formal account of execution
planning for asynchronous multi-agent domains, in their current form they are not
suitable for an effective implementation. The difficulty arises from the definition
of History(ex, br, h), which due to the partial ordering on events can generate an
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exponentially-large number of possible histories. To verify that a joint execution is
legal, the planner needs to examine each of these histories individually.

To overcome this difficulty and produce an effective implementation, we identify
a restricted class of joint executions in which all possible histories of a branch are
provably equivalent. Such executions can be reasoned about using the canonical
ordering over events, rather than having to enumerate each possible distinct history.

5.4.1 Independent Actions

To construct families of situation terms that are all equivalent, we need a way to
identify independent actions. Intuitively, we want independent actions to be able to
be performed in either order, or even concurrently, without affecting what holds in
the resulting situation, or the preconditions or outcomes of each action. This section
formally identifies the conditions that independent actions must satisfy.

For simplicity, we identify actions that are independent regardless of the situation
they are performed in. Let us assume that the theory of action D is equipped with
a rigid predicate indep(a, a′) identifying actions that are independent. We identify
sets of mutually-independent actions with this simple definition:

mIndep(c) def= ∀a, a′ : a ∈ c ∧ a′ ∈ c → indep(a, a′)

We then restrict the theory of action to satisfy the following conditions:

Definition 16 (Independent Actions). A theory of action D correctly specifies in-
dependent actions when it contains a rigid predicate indep(a, a′) and entails the
following, where F is a meta-variable ranging over fluents:

1. D |= indep(a, a′) ≡ indep(a′, a)

2. D |= Legal({a}, s) ≡ Legal({a}, do({a′}, s))

3. D |= Out({a}, s) = Out({a}, do({a′}, s))

4. D |= F(do({a}, do({a′}, s))) ≡ F(do({a′}, do({a}, s)))

5. D |= mIndep(c) → (Legal(c, s) ≡ ∀a ∈ c : Legal({a}, s))

6. D |= mIndep(c) → (o ∈ Out(c, s)[agt] ≡ ∃a ∈ c : o ∈ Out({a}, s)[agt])

7. D |= mIndep(c) → ∀a ∈ c : (F(do(c, s)) ≡ F(do({a}, do(c− {a}, s))))

The first restriction simply ensures that independence is symmetrical. The next
three restrictions ensure that independent actions do not interfere with each other’s
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preconditions, outcomes or effects. The final three restrictions ensure that there is
no interference between preconditions, outcomes or effects when independent actions
are performed concurrently.

The following theorems are direct consequences of correctly specifying indepen-
dent actions; indeed, they are the motivation for the restrictions in Definition 16.

Theorem 2. Let h and h′ be two histories of the same length, containing the same
action#outcome pairs, and differing only by transposition of ({a}#y) and ({a′}#y′).
If indep(a, a′) holds, then h is legal if and only if h′ is legal.

Proof. Let hp be the common prefix of these histories and hs the common suffix:

h = hs · ({a}#y) · ({a′}#y′) · hp
h′ = hs · ({a′}#y′) · ({a}#y) · hp

By restrictions 2 and 3 from Definition 16, we have:

Legal({a}, Sit(hp)) ≡ Legal({a}, Sit(({a′}#y′) · hp))

Out({a}, Sit(hp)) = Out({a}, Sit(({a′}#y′) · hp))

And vice-versa. If hs is empty, this is sufficient to establish Legal(h) iff Legal(h′)
as desired. Alternately, suppose hs contains n items, then we can apply regression
n times to state the legality of the hs component as a uniform formula evaluated at
Sit(({a}#y) · ({a′}#y′) · hp). By restriction 4, whether this formula holds will be
unaffected by the order of {a} and {a′} and we have the equivalence as desired.

Theorem 3. Let h and h′ be two histories that differ only by the concurrent exe-
cution of adjacent mutually-independent actions, and the corresponding agent-wise
union of their outcomes. Then h is legal iff h′ is legal.

Proof. Assume that the histories differ by concurrent execution of a single action.
Let hp be the common prefix of these histories and hs the common suffix:

h = hs · ({a}#y) · ({c}#y′) · hp
h′ = hs · (c ∪ {a}#y′′) · hp

Furthermore, we’re given that:

agt#o ∈ y′′ ≡ o ∈ y[agt] ∨ o ∈ y′[agt]

mIndep(c ∪ {a})
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By mutual independence, and restrictions 2 and 5, we have:

Legal({a}, Sit(({c}#y′) · hp)) ≡ Legal({a}, Sit(hp))

Legal(c ∪ {a}, Sit(hp)) ≡ Legal({a}, Sit(hp)) ∧ ∀a′ ∈ c : Legal({a′}, Sit(hp))

Similarly for outcomes, using restrictions 3 and 6:

Out({a}, Sit(({c}#y′) · hp)) = Out({a}, Sit(hp))

o ∈ Out(c ∪ {a}, Sit(hp))[agt] ≡ o ∈ (Out({a}, Sit(hp)) ∪Out(c, Sit(hp))) [agt]

This is sufficient to establish Legal(h) iff Legal(h′) if hs is empty. Alternately,
suppose hs contains n items, then we can apply regression n times to state the
legality of the hs component as a uniform formula evaluated at Sit((c∪{a}#y′′)·hp).
By restriction 7, whether this formula holds will be unaffected if {a} is executed
separately, and we have the equivalence as desired.

If the histories differ by concurrent execution of more than a single action, we
can simply unfold them into a sequence of histories differing by only one action,
with each being legal iff its adjacent history is legal.

Note that we make no attempt to derive action independence from the theory
of action, but simply assume an appropriate predicate indep(a, a′) is available for
the purposes of planning. This predicate need not identify all independent actions,
although the more actions that can be identified as independent, the better for our
implementation.

5.4.2 Reasonability

We can now define a reasonable joint execution as one in which every pair of action
events is either ordered, in conflict, or independent:

Definition 17 (Reasonable Joint Execution). A joint execution is reasonable if it
satisfies the following restriction:

D |= ∀i, j ∈ events(ex) : IsAction(lbl(ex, i)) ∧ IsAction(lbl(ex, j))

→ i ≺ex j ∨ j ≺ex i ∨ i⊕ex j ∨ indep(lbl(ex, i), lbl(ex, j))

We call such executions “reasonable” because a planner can reason about then
effectively, using the unique canonical history of each leaf rather than enumerating
every individual history.
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Theorem 4. Let ex be a reasonable joint execution, then:

D ∪Dje |= ∀lf : Leaf(ex, lf) →

[Legal(ex, lf) ≡ ∃h : CHistory(ex, lf, h) ∧ Legal(h)]

Proof. By definition, a leaf is legal if every possible history of that leaf is legal,
so the if direction is trivial. For the only-if direction, assume that the canonical
history of the leaf if legal. The histories of a leaf can differ only by the ordering or
concurrent execution of unordered action events, and all unordered action events in
a reasonable execution are independent. Therefore every history of the leaf differs
from the canonical history by transposition or concurrent execution of independent
action events. So if the canonical history is legal, by Theorems 2 and 3 we have
legality of every history and hence legality of the leaf as required.

This result is key to our implementation of a MIndiGolog execution planner
based on joint executions - by restricting its search to reasonable executions, it can
verify the legality of each leaf by querying the legality of the canonical leaf history,
which can be done using standard regression techniques.

We thus trade completeness for efficiency in our implementation. There can cer-
tainly be non-reasonable joint executions that are valid plans of execution according
to equation (5.1), but it is computationally too expensive to search for them in
practice.

5.5 Implementation

We have modified our MIndiGolog execution planner from Chapter 3 to perform
offline execution planning and generate a joint execution rather than a raw situation
term. For details on obtaining the full source code see Appendix B; for the full
axiomatisation of observability in our example domain see Appendix C.

As mentioned in Section 5.2, Figure 5.2 shows the output of our planner when
run on the MakeSalad program from Chapter 3. Since all actions in this execution
have a single outcome, the outcome events have been suppressed for brevity.

In the cooking agents domain, actions are independent if they deal with different
objects. As seen in Figure 5.2, the use of a partial order structure facilitates inde-
pendent execution between the agents, with each processing a different ingredient
and only synchronising on the availability of the required resources. This execution
provides the maximum potential for concurrency given the resource constraints of
the domain, and is clearly a significant improvement over totally ordered sequences
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of actions as produced by the earlier MIndiGolog planner.

However, the simple MakeSalad program does not demonstrate a key feature of
joint executions: branching. Consider instead the program MakeSalad2 shown in
Figure 5.6. In this case the agents are unsure whether there are any eggs available,
so the sensing action checkFor is required. If there are eggs then they should make
an egg salad, otherwise they should make the standard vegetable salad. Note that
since lettuce appears in both dishes, they are permitted to begin processing that
ingredient before checking for the eggs.

procMakeSalad2(dest)
[ π(agt, ChopTypeInto(agt, Lettuce, dest)) ||

ChopEggOrV eg(dest) ] ;
π(agt, [acquire(agt, dest) ;
beginTask(agt,mix(dest, 1)) ;
endTask(agt,mix(dest, 1)) ;
release(agt, dest)]) end

procChopEggOrV eg(dest)
π(agt, checkFor(agt, Egg)) ;

if

∃e : IsType(e, Egg) ∧ ¬Used(e)
then

[π(agt, ChopTypeInto(agt, Egg, dest)) ||
π(agt, ChopTypeInto(agt, Cheese, dest))]

else

[π(agt, ChopTypeInto(agt, Carrot, dest)) ||
π(agt, ChopTypeInto(agt, Tomato, dest))] ;

endif end

Figure 5.6: A Golog program for making Egg or Veg Salad

The joint execution found by our implementation for MakeSalad2 is shown in
Figure 5.7. The event nodes in this diagram are colour-coded into three groups:
white nodes can occur independently of the sensing results from checkFor; light-
grey nodes can only occur if checkFor returns false; dark-grey nodes can only occur
if checkFor returns true.
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Figure 5.7: Joint Execution for the MakeSalad2 program
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We see from this joint execution that Joe can indeed prepare the lettuce without
needing to know whether eggs are available. Jim is assigned to check for the eggs,
and acquires either an egg or a tomato depending on the outcome of his sensing
action. Importantly, Jon has to wait until Jim acquires his ingredient before he
knows whether to process the cheese, or the carrot. This is due to him being unable
to directly observe the outcome of the checkFor action.

Again, there is a significant amount of independence between agents in this
execution. They do not need to be able to observe the private processing actions
such as chop and mix, and only need to synchronise their actions when they come
to release/acquire the shared resources. By basing branching and synchronisation
directly on the observations made by each agent, joint executions allow us to capture
this kind of rich branching and partial-order structure while ensuring that the agents
can still feasibly execute the plan based solely on their local information.

In the following sections we highlight some key aspects of our implementation.

5.5.1 Program Steps

The Trans predicate of MIndiGolog is modified to generate steps instead of con-
structing a new situation term. These are records that describe not only the next
action to perform, but also meta-data about that action’s role in the overall program.
Step records have the following attributes.

• action: the action performed in that step, or nil if it is an internal program
transition

• test: an additional fluent formula that must hold immediately before perform-
ing the step

• thread: a sequence of ’l’ and ’r’ characters indicating the concurrent thread in
which the step is performed

• outcome: the outcome of performing the action.

Step records track the necessary information to determine whether the program
allows any given pair of actions to be performed independently. A sequence of
steps can be used as a history term in the obvious way, taking only the actions and
outcomes.

The thread-naming scheme used here is similar to that of [33]. Each time Trans
chooses to execute a step from the left-hand side of a concurrency operator it appends
an “l” to the thread name, and each time it chooses the right-hand side it appends
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an “r”. If one step’s thread name is a prefix of another step’s thread name, then
those two steps must be performed in the order they are generated; if not, they are
steps from different threads and can potentially be performed concurrently.

The procedure implementing Trans takes a program and a history as input,
returning a new step of execution along with the remainder of the program to be
executed. The code below is representative of this procedure:

proc {Trans D H Dp Sp}

case D of

nil then fail

[] test(Cond) then

{Sitcalc.holds Cond H}

Dp = nil

Sp = {Step.init step(test:Cond)}

[] choose(D1 D2) then

choice {Trans D1 H Dp Sp}

[] {Trans D2 H Dp Sp}

end

[] conc(D1 D2) then

choice D1p S1p in

{Trans D1 H D1p S1p}

Dp = conc(D1p D2)

Sp = {Step.addthred S1p l}

[] D2p S2p in

{Trans D2 H D2p S2p}

Dp = conc(D1 D2p)

Sp = {Step.addthred S2p r}

end

[] ... <additional cases ommitted> ...

else Dp = nil

{Sitcalc.legal [D] H}

Sp = {Step.init step(action:D)}

end

end

end

In particular, note that the evaluation of test conditions calls Sitcalc.holds pass-
ing it the input history. This procedure performs standard regression-based reason-
ing using a “just-in-time history” assumption to handle sensing results, in the same
manner as standard IndiGolog [17]. The planner ensures that this is the canonical
history of the leaf that is being planned for, so we can be sure that the test will hold
in all possible histories of the leaf if it holds in the given history.

We say that two steps are ordered if any of the following holds: their action terms
are not independent; one’s thread is a prefix of the other; one’s action falsifies the
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test condition associated with the other. When building a joint execution, ordered
steps are forced to be executed in the order they were generated by the planner, while
unordered steps may be performed independently and potentially concurrently.

Note that we no longer require a separate clause to handle true concurrency in the
conc(D1D2) case, unlike the MIndiGolog implementation from Chapter 3. Rather,
the potential for truly concurrent execution is captured in the partial ordering of the
joint execution itself, which allows independent actions to be performed concurrently
while forcing non-independent actions to occur in a particular order.

5.5.2 Building Joint Executions

Our implementation builds up joint executions by inserting one action at a time,
in much the same way that the standard Golog planning loop builds up situation
terms. The procedure Insert is called with the step object whose action is to be
inserted, the leaf for which it is a new program step, and a function MustPrec that
will be used to determine the action’s enablers.

proc {Insert JIn Lf S MustPrec JOut Outcomes}

PossEns = {FindEnablingEvents JIn S.action Lf MustPrec}

Ens = {FilterEnablers JIn PossEns}

in

{InsertWithEnablers JIn Lf S Ens JOut Outcomes}

end

proc {InsertWithEnablers JIn Lf S Ens JOut Outcomes}

Outs = {Sitcalc.outcomes S}

AId|OIds = {IntMap.nextAvailLabels JIn S|Outs}

J1 J2

in

J1 = {IntMap.append JIn act(action: S.action

enablers: Ens

outcomes: OIds)}

J2 = {InsertOutcomes AId J1 Outs OIds}

JOut = {FixFeasibility J2 AId}

Outcomes = for collect:C I in OIds do

{C {BranchPush JOut I Lf}}

end

end

The joint execution code enumerates all possible outcomes of the action and
inserts corresponding outcome events. This extends the input leaf by the given
action, and if the input leaf was legal, then one the new leaves so generated is also
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guaranteed to be legal. The updated joint execution is returned along with the new
outcome events.

The call to FixFeasibility ensures that the joint execution remains feasible, by
inserting additional action events if it discovers branches that have identical views for
the performing agent. Currently this is done using a brute-force search through all
possible histories, but it is able to eliminate many branches quickly by first checking
whether they will always contain an incompatible observation.

When determining the enablers for a new action, the joint execution code has
potentially many choices, and generates choice points accordingly. It processes all
existing events on the leaf in turn, first checking if they are orderable according
to the restrictions on feasible joint executions. If they are orderable, the function
MustPrec is called to determine whether they must be ordered according to the
semantics of the program. If they are orderable, but need not be ordered, a choice
point is generated.

proc {FindEnablingEvents J Act Ns MustPrec Ens}

case Ns of N|Nt then

RemNs = {BranchPop J Ns _} in

if {Orderable J N Act} then

if {MustPrec N} then

% Orderable, and must preceed, so it’s an enabler.

Ens = N|_

{FindEnablingEvents J Act Nt MustPrec Ens.2}

else

% Orderable + not must prec == choicepoint

choice {FindEnablingEvents J Act RemNs MustPrec Ens}

[] Ens = N|_

{FindEnablingEvents J Act Nt MustPrec Ens.2}

end

end

else

% Not orderable, so {MustPrec} must return false

{MustPrec N} = false

{FindEnablingEvents J Act RemNs MustPrec Ens}

end

else Ens = nil end

end

5.5.3 Planning Loop

The main execution planning loop operates by extending a joint execution one leaf
at a time. At each iteration, the current state of the plan is represented by the joint
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execution built so far, along with a list of program#history#leaf tuples tracking each
leaf in the joint execution. The history here is the list of program steps performed
on that leaf, and also gives the canonical leaf history, while the program represents
what remains to execute on that leaf. The planning loop can only terminate when
every leaf has a program that is final in its canonical history.

The top-level procedure Plan takes a program as input, and calls MakeP lan

with an empty joint execution and a single, empty leaf:

proc {Plan D J}

{MakePlan {JointExec.init} [D#now#nil] J}

end

MakeP lan is a recursive procedure implementing the planning loop. Note that
it cannot discard leaves or process them in isolation, since extending one leaf with
an action may cause actions to be added to other leaves in order to maintain the
feasibility restrictions.

proc {MakePlan JIn Leaves JOut}

LCls LRest

in

{FindOpenLeaf JIn Leaves LCls LRest}

case LRest of (D#H#N)|Ls then Dp Hp S J2 OutNs OutLs in

{FindTrans1 D H Ls Dp Hp S}

OutNs = {JointExec.insert JIn N S {MkPrecFunc S Hp} J2}

OutLs = for collect:C N2 in OutNs do

{C Dp#ex({JointExec.getout J2 N2 S} Hp)#N2}

end

{MakePlan J2 {List.append LCls {List.append OutLs Ls}} JOut}

else

JOut = JIn

end

end

Each iteration of the planning loop proceeds as follows. First, it searches for
an open leaf, one for which a terminating execution of the program has not yet
been found. If no open leaves are found, planning can terminate. Otherwise, the
procedure FindTrans1 is called to find a new step of execution for that leaf. The
action is inserted into the joint execution, which returns a list of new leaves, one
for each possible outcome of the action. Each is added to the list of leaves to be
processed, and the loop repeats.
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The procedure to find an open leaf must also deal with any new events that were
inserted into the joint execution to maintain its feasibility invariants. The procedure
HandleExistingEvents rolls the leaf forward to account for these new events, or
fails if an event was added that does not form part of a legal program execution.

proc {FindOpenLeaf J Leaves LCls LRest}

case Leaves of (D1#H1#N1)|Ls then D H N NewLs in

(D#H#N)|NewLs = {HandleExistingEvents J D1#H1#N1}

if {MIndiGolog.isFinal D H} then

LCls = (D#H#N)|_

{FindOpenLeaf J {List.append NewLs Ls} LCls.2 LRest}

else

LClosed = nil LRest = (D#H#N)|{List.append NewLs Ls}

end

else LCls = nil LRest = nil end

end

Of particular interest is the procedure FindTrans1, which uses the encapsulated
search functionality of Mozart to yield possible next steps according to an estimate
of their potential for concurrency. The procedure LP.yieldOrdered yields the solu-
tions of the given search context, sorted using the procedure CompareSteps. This
procedure gives preference to steps that can be performed concurrently with as many
existing actions as possible.

proc {FindTrans1 D H Ls Dp Rp S}

Searcher SearchProc

in

proc {SearchProc Q} Dp Hp S in

{MIndiGolog.trans1 D H Dp Hp S}

Q = Dp#Hp#S

end

Searcher = {New Search.object script(SearchProc)}

Dp#Rp#S = {LP.yieldOrdered Searcher CompareTrans1}

end

This use of encapsulated search allows our implementation to find highly con-
current executions, such as the one shown in Figure 5.7.
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5.6 Discussion

In this chapter we have defined a joint execution as a special kind of prime event
structure. We contend that such structures are highly suitable for planning the
actions to be performed by a team of agents in service of some shared task, such as
executing a shared Golog program.

On one hand, joint executions are restricted enough to be practical for such use.
By limiting ourselves to reasonable joint executions, each leaf can be easily converted
into a single history term for the purposes of reasoning, and can be extended one
action at a time. This allows us to re-use much of the standard IndiGolog reasoning
machinery. By ensuring that the joint execution is feasible, the agents are guaranteed
to be able to perform it in a purely reactive fashion, with each agent acting based
only on its local information.

Joint executions are also significantly more flexible than previous approaches.
They allow independent actions to be performed without synchronisation, in any
order. The agents need never know precisely what actions have been executed,
as long as their local observations are sufficient to determine the next action to
perform. Synchronisation is automatically achieved when required by explicitly
reasoning about what actions each agent can observe, rather than requiring the
public observability of all actions.

To demonstrate the utility of these structures, we have implemented a new ver-
sion of our MIndiGolog interpreter that produces joint executions as its output,
and shown that the resulting executions can enable significant independence among
agents when cooperatively executing the plan.

An alternate approach to coordinating concurrent execution in Golog-like lan-
guages is the TeamGolog language developed in [26], where agents explicitly syn-
chronise through communication and a shared state. By contrast, our approach
constructs synchronisation implicitly by reasoning about the actions that can be ob-
served by each agent. This has the advantage of requiring no changes to the form or
semantics of the agents’ control program, but the disadvantage that joint execution
construction may fail if too many actions are unobservable. It would be interesting
to combine these approaches by automatically incorporating explicit communication
when implicit synchronisation is not possible.

There is, of course, an extensive body of work on partial-order planning in the
context of goal-based planning. Unsurprisingly, the joint execution structure we
develop here has deep similarities to the structures used in conditional partial-order
planners such as [75]. It is, however, intentionally specific to the situation calculus.
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We make no use of many concepts common in partial-order goal-based planning
(causal links, threats, conflicts, etc) because we do not deal explicitly with goals, but
with steps generated by an underlying transition semantics. Our approach can be
considered roughly equivalent to deordering of a totally-ordered plan as described
in [3]; we plan as if actions are performed in the specific order identified by the
canonical leaf history, but allow actions to be performed out-of-order if they are
independent.

Our use of a restrictive plan representation that branches directly on the sens-
ing results returned by actions has strong parallels with the “robot programs” of
[61, 64], but is significantly less expressive. In particular, joint executions do not
allow looping constructs and thus lack the universality of general robot programs.
It would be interesting to incorporate loops in our structures, but how to do so is
far from clear in the face of partial observability. Indeed, producing iterative plans
is still an active area of research even in the single-agent case [60].

By explicitly formalising the local perspective of each agent, we have given an
account of planning with coordination and feasibility guarantees without needing to
perform explicit epistemic reasoning. On one hand, this means we can implement a
practical planning system without concern for the computational difficulties involved
in epistemic reasoning. But this has also limited us to purely offline planning, since
the correctness of the algorithm depends crucially on all agents having the same
knowledge of the domain.

As discussed in Section 5.3, extending the use of joint executions for online exe-
cution in asynchronous domains poses a significant challenge, and seems to require
explicit reasoning about knowledge and common knowledge. The remainder of this
thesis is devoted to developing the foundations of such a reasoning system, by ex-
tending the standard account of epistemic reasoning in the situation calculus to
handle asynchronous domains.
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Chapter 6
Property Persistence

This chapter develops a new inductive reasoning technique for the situation calculus
that can handle certain types of universally-quantified query. As discussed in Chap-
ter 4, for an agent in an asynchronous domain to reason about the world based on
its local information, it needs to pose queries that universally quantify over situation
terms. Unfortunately such queries cannot be handled using the regression operator,
and have thus far been beyond the reach of automated reasoning systems for the
situation calculus.

We study a restricted subset of universally-quantified queries that we refer to as
property persistence queries, introducing an approach to reasoning about them that
is similar in spirit to the standard regression operator: transform the query into a
form more amenable to automated reasoning. A new meta-operator PD is defined
such that φ persists in s if and only if PD(φ) holds in s. We term the formula
generated by this operator the persistence condition of φ.

The persistence condition is shown to be a fixpoint of applications of the regres-
sion operator, which can be calculated using an iterative approximation algorithm.
The resulting formula can then be used in combination with standard regression-
based reasoning techniques, allowing the inductive component of the reasoning to
be “factored out” and approached using a special-purpose reasoning algorithm. The
technique is always sound, and is complete in several interesting cases.

Chapter 4 identified a universally-quantified query with which an agent can rea-
son about its own world based on its local view. This query is not in a form that
that can be handled directly using the persistence condition. However, Chapter 7
will demonstrate how to combine the techniques developed in this chapter with a
new formalism for epistemic reasoning, allowing an agent to reason effectively about
its own knowledge using a combination of regression and property persistence.
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The chapter proceeds as follows: after some more detailed background material
on inductive reasoning in the situation calculus in Section 6.1, we formally define the
class of property persistence queries in Section 6.2, along with several examples of
practical queries that are of this form. Section 6.3 defines the persistence condition
operator and demonstrates that it is equivalent to the result of a meta-level fixpoint
calculation. Section 6.4 presents a simple iterative algorithm for calculating the
persistence condition, and discusses its correctness, completeness, and effectiveness.
We conclude with some general discussion in Section 6.5.

6.1 Background

While there is a rich and diverse literature base for the situation calculus, there
appears to have been little work on reasoning about universally quantified queries.
The work of Reiter [89] shows how to handle such queries manually using an appro-
priate instantiation of the second-order induction axiom, but makes no mention of
automating this reasoning.

Other work considering queries that universally quantify over situations focuses
exclusively on verifying state constraints. These are uniform formulae that must hold
in every possible situation, a highly specialised form of the more general persistence
queries we define in this chapter. The work of Lin and Reiter [66] shows that the
induction axiom can be “compiled away” when verifying a state constraint, by means
of the following equivalence:

D |= φ[S0]→ (∀s : S0 ≤ s→ φ[s])

iff

Duna |= ∀s, a : φ[s] ∧RD(Poss(a, s)) → RD(φ[do(a, s)])

The set Duna here performs the same role as our background axioms Dbg but contains
only the unique names axioms for actions. Verification of a state constraint can thus
be reduced to reasoning about a universally quantified uniform formula using only
the static background theory, a comparatively straightforward reasoning task which
we call static domain reasoning. Verification of state constraints was also approached
by Bertossi et al. [11], who develop an automatic constraint verification system using
an induction theorem prover.

However, there are many issues that are not addressed by work specific to state
constraints. What if we are interested in the future of some arbitrary situation
σ, rather than only S0? What if want to restrict future actions according to an
arbitrary action description predicate? Can we integrate a method for handling
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universally-quantified queries with existing regression techniques? Our treatment
of property persistence can provide a concrete basis for these considerations, and is
hence significantly more general than this existing work.

Another field that deals with induction over situations is the verification of Con-
Golog programs. De Giacomo et al. [18] show how to formulate various safety,
liveness, and starvation properties of a ConGolog program as fixpoint queries in
second-order logic. A preliminary model-checker capable of verifying these proper-
ties is described in [42]. Claßen and Lakemeyer [14] develop a logic of ConGolog
programs in ES, a variant of the situation calculus based on modal logic. They
demonstrate that properties of a program can be verified using an iterative fixpoint
computation similar to the one we propose in this chapter.

As we shall see, property persistence queries are equivalent to a particular kind
of safety property of a ConGolog program, so our work is in some ways less general
than that described above. This means, however, that we can be more specific in
our algorithm and approach. These ConGolog verifiers are designed to operate in
isolation, while we seek a method of handling universally-quantified queries that
can integrate directly with the existing meta-theoretical reasoning machinery of the
situation calculus, in particular with the regression operator.

Finally, let us introduce an important property of situations first formally iden-
tified by Savelli [96]: that universal quantification over situation terms is equivalent
to an infinite conjunction over the levels of the tree of situations:

D |= ∀s : ψ(s)

iff

D |=
∧
n∈N
∀a1, . . . , an : ψ(do([a1, . . . , an], S0))

This is a direct consequence of the induction axiom for situations, which restricts
situations to be constructed by performing some countable number of actions in the
initial situation. While we do not use this result directly in this chapter, it captures
an important intuition about situation terms that is fundamental to the operation
of our approach.

6.2 Property Persistence Queries

Let us now formally define the kinds of query that will be approached in this chapter.
Given some property φ and situation σ, a property persistence query asks whether
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φ will hold in all situations in the future of σ:

D |= ∀s : σ v s → φ[s]

More generally, one may wish to limit the futures under consideration to those
brought about by actions satisfying a certain action description predicate α, which
is easily accomplished using the ≤α macro. We thus have the following definition of
a persistence query:

Definition 18 (Property Persistence Query). Let φ be a uniform formula, α an
action description predicate, and σ a situation term. Then a property persistence
query is a query of the form:

D |= ∀s : σ ≤α s→ φ[s]

In words, a persistence query states that “φ holds in σ, and assuming all subse-
quent actions satisfy α, φ will continue to hold”. For succinctness we will henceforth
describe this as “φ persists under α”. Queries of this form are involved in many use-
ful reasoning tasks, of which the following are a small selection:

Goal Impossibility: Given a goal G, establish that there is no legal situation
in which that goal is achieved:

D |= ∀s : S0 ≤Legal s→ ¬G(s)

Goal Futility: Given a goal G and situation σ, establish that the goal cannot
be achieved in any legal future of σ:

D |= ∀s : σ ≤Legal s→ ¬G(s)

Note how this differs from goal impossibility: while the agent may have initially
been able to achieve its goal, the actions that have subsequently been performed
have rendered the goal unachievable. Agents would be well advised to avoid such
situations.

Checking State Constraints: Given a state constraint SC, show that the
constraint holds in every legal situation:

D |= ∀s : S0 ≤Legal s→ SC(s)
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This can be seen as a variant of goal impossibility, by showing that the constraint
can never be violated.

Need for Cooperation: Given an agent agt, goal G and situation σ, establish
that no sequence of actions performed by that agent can achieve the goal. Suppose
we define MyAction to identify the agent’s own actions:

MyAction(a, s) def= actor(a) = agt

Then the appropriate query is:

D |= ∀s : σ ≤MyAction s→ ¬G(s)

If this is the case, the agent will need to seek cooperation from another agent in
order to achieve its goal.

Knowledge with Hidden Actions: An agent reasoning about its own knowl-
edge in asynchronous domains must account for arbitrarily-long sequences of hidden
actions. To establish that it knows φ, it must establish that φ cannot become false
through a sequence of hidden actions:

D |= ∀s : σ ≤Hidden s→ φ[s]

This last case is our main motivation for the developments in this chapter, and
we will explore the use of property persistence in this context in detail in Chapter 7.
The other examples are designed to show that persistence queries are quite a general
form of query, and the techniques developed in this chapter thus have application
beyond our specific use of them in the remainder of this thesis.

Unfortunately, persistence queries do not meet the criteria for regressable for-
mulae found in Definition 5, since they quantify over situation terms. Such queries
therefore cannot be handled using the standard regression operator. Indeed, since
universal quantification over situation terms requires the use of a second order induc-
tion axiom, current systems needing to answer such queries must resort to second-
order theorem proving. This is hardly an attractive prospect for effective automated
reasoning.
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6.3 The Persistence Condition

To implement practical systems that can perform persistence queries, we clearly
need to transform the query into a form suitable for effective automated reasoning.
Our approach is to transform a property persistence query at σ into the evaluation
of a uniform formula at σ. This transformed query can then be handled effectively
using the standard regression operator.

To achieve this we need some transformation of a property φ and action de-
scription predicate α into a uniform formula PD(φ, α) that is true at precisely the
situations in which φ persists under α. We call such a formula the persistence con-
dition of φ under α.

Definition 19 (Persistence Condition). The persistence condition of φ under α,
denoted PD(φ, α), is a uniform formula that is equivalent to the persistence of φ
under α with respect to a basic action theory D without the initial situation axioms.
Formally:

D −DS0 |= ∀s :
(
PD(φ, α)[s] ≡ ∀s′ : s ≤α s′ → φ[s′]

)
Defining PD to be independent of the initial world state allows an agent to

calculate it regardless of what (if anything) is known about the actual state of the
world – after all, an agent may not know all the details of DS0 , and we still want it
to be able to use this technique.

This definition alone clearly does not make the task of answering a persistence
query any easier, since it gives no indication of how the persistence condition might
be calculated in practice. Indeed, we have not yet even shown whether such a
formula actually exists. In order to establish these results, we first need to define
the weaker notion of a formula persisting to depth n in a situation.

Since we wish to establish our technique as a general reasoning mechanism for
the situation calculus, we drop the assumption that concurrent actions are in use
for the duration of this chapter. Note that nothing in our definitions precludes the
use of various situation calculus extensions as described in Section 2.1.4.

Definition 20 (Persistence to Depth 1). A uniform formula φ persists to depth 1
under α in situation s when the formula P1

D(φ, α)[s] holds, as defined by:

P1
D(φ, α) def= φ−1 ∧ ∀a : RD(α[a, s])−1 → RD(φ[do(a, s)])−1

Note that P1
D is a literal encoding of the requirement “φ holds in s and in all

its direct successors”, using the standard regression operator RD and the situation-
suppression operator φ−1 to produce a situation-suppressed uniform formula. With-
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out the use of regression, the definition would appear as follows:

P1
D(φ, α)[s] ≡ φ[s] ∧ ∀a : α[a, s] → φ[do(a, s)]

Since α is an action description predicate and φ is a uniform formula, the expres-
sions RD(α[a, s])−1 and R(φ[do(a, s)])−1 are always defined and always produce uni-
form formulae. Successive applications of P1

D can then assert persistence to greater
depths:

Definition 21 (Persistence to Depth N). For any n ≥ 0, a uniform formula φ

persists to depth n under α in situation s when the formula PnD(φ, α)[s] holds, as
defined by:

P0
D(φ, α) def= φ

PnD(φ, α) def= P1
D(Pn−1

D (φ, α), α)

The following theorem confirms that PnD operates according to this intuition –
that for any sequence of actions of length i = 0 to i = n, if each action satisfies α in
the situation it is executed in, then φ will hold after executing those actions.

Theorem 5. For any n ∈ N, PnD(φ, α) holds in σ iff φ holds in σ and in all
successors of σ reached by performing at most n actions satisfying α:

D |= PnD(φ, α)[σ] ≡

∧
i≤n
∀a1, . . . , ai :

∧
j≤i

α[aj , do([a1, . . . , aj−1], σ)] → φ[do([a1, . . . , ai], σ)]


Proof Sketch. By induction on the natural numbers. For n = 0 we have φ[σ] ≡ φ[σ]
by definition. For the inductive case, we expand the definition of PnD(φ, α)[σ] to get
the following for the LHS:

Pn−1
D (φ, α)[σ] ∧ ∀a : RD(α[a, σ])→ RD(Pn−1

D (φ, α)[do(a, σ)])

Substituting for Pn−1
D using the inductive hypothesis gives us a conjunction rang-

ing over i ≤ n − 1, with universally quantified variables a1, . . . , ai, and we must
establish the i = n case. Pushing this conjunction inside the scope of the ∀a quan-
tifier, we find we can rename a ⇒ a1, a1 ⇒ a2 etc to get the required expression.
For a detailed proof see Appendix A.

The PnD operator thus allows us to express the persistence of a formula to any
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given depth using a simple syntactic translation based on regression. Intuitively,
one would expect PD(φ, α) to be some sort of fixpoint of P1

D(φ, α), since PD(φ, α)
must imply persistence up to any depth. Such a fixpoint could then be calculated
using standard iterative approximation techniques. The remainder of this section is
devoted to verifying this intuition.

We begin by adapting two existing results involving induction from the situation
calculus literature, so that they operate with our generalised ≤α notation and can
be based at situations other than S0.

Proposition 4. For any action description predicate α, the foundational axioms of
the situation calculus entail the following induction principle:

∀W, s : W (s) ∧
[
∀a, s′ : α[a, s′] ∧ s ≤α s′ ∧W (s′)→W (do(a, s′))

]
→ ∀s′ : s ≤α s′ →W (s′)

Proof. A trivial adaptation of Theorem 1 in [89].

Proposition 5. For any basic action theory D, uniform formula φ and action de-
scription predicate α:

D −DS0 |= ∀s : φ[s]→
(
∀s′ : s ≤α s′ → φ[s′]

)
iff

Dbg |= ∀s, a : φ[s] ∧RD(α[a, s])→ RD(φ[do(a, s)])

Proof. A straightforward generalisation of the model-construction proof of Lemma
5 in [66], utilising Proposition 4.

Proposition 5 will be key in our algorithm for calculating the persistence condi-
tion. It allows one to establish the result “if φ holds in s, then φ persists in s” by
using static domain reasoning, a comparatively straightforward reasoning task.

We next formalise some basic relationships between PD and PnD.

Lemma 2. Given a basic action theory D, uniform formula φ and action description
predicate α, then for any n:

D −DS0 |= ∀s :
(
∀s′ : s ≤α s′ → φ[s′]

)
≡
(
∀s′ : s ≤α s′ → PnD(φ, α)[s′]

)
That is, φ persists under α iff PnD[φ, α] persists under α.

Proof. Since PnD[φ, α] implies φ by definition, the if direction is trivial. For the
only-if direction we proceed by induction on n.
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For the base case, assume that φ persists but P1
D(φ, α) does not, then we must

have some s′ with s ≤α s′ and ¬P1
D(φ, α)[s′]. By the definition of P1

D, this means
that:

¬
(
φ[s′] ∧ ∀a : α[a, s′]→ φ[do(a, s′)]

)
Since φ persists it must hold at s′, so there must be some a such that α[a, s′] and

¬φ[do(a, s′)]. But s ≤α do(a, s′) and so φ[do(a, s′)] must hold by our assumption
that φ persists, and we have a contradiction.

For the inductive case, assume that Pn−1
D (φ, α) persists but PnD(φ, α) does not.

By definition we have PnD(φ, α) = P1
D(Pn−1

D (φ, α), φ), and we repeat the base case
proof using φ′ = Pn−1

D (φ, α) in place of φ to obtain a contradiction.

Lemma 3. Given a basic action theory D, uniform formula φ and action description
predicate α, then for any n:

D −DS0 |= ∀s : (PD(φ, α)[s]→ PnD(φ, α)[s])

Proof. PD(φ, α) implies the persistence of φ by definition. If φ persists at s, then by
Lemma 2 we have that PnD(φ, α) persists at s . Since the persistence of PnD(φ, α) at
s implies that PnD(φ, α) holds at s by definition, we have the lemma as desired.

We are now equipped to prove the major theorem of this chapter: that if PnD(φ, α)
implies Pn+1

D (φ, α), then PnD(φ, α) is the persistence condition for φ under α.

Theorem 6. Given a basic action theory D, uniform formula φ and action descrip-
tion predicate α, then for any n:

Dbg |= ∀s : PnD(φ, α)[s]→ Pn+1
D (φ, α)[s] (6.1)

iff

D −Ds0 |= ∀s : PnD(φ, α)[s] ≡ PD(φ, α)[s] (6.2)

Proof. For the if direction, we begin by expanding equation (6.1) using the definition
of P1

D to get the equivalent form:

Dbg |= ∀s : PnD(φ, α)[s]→ P1
D(PnD(φ, α), α)[s]

Dbg |= ∀s : PnD(φ, α)[s]→ (PnD(φ, α)[s] ∧ ∀a : RD(α[a, s])→ RD(φ[do(a, s)]))

Dbg |= ∀s, a : PnD(φ, α)[s] ∧ ∀a : RD(α[a, s])→ RD(φ[do(a, s)])

By Proposition 5, equation (6.1) thus lets us conclude that PnD(φ, α) persists under
α. By Lemma 2 this is equivalent to the persistence of φ under α, which is equivalent
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to PD(φ, α) by definition, giving:

D −Ds0 |= ∀s : PnD(φ, α)[s]→ PD(φ, α)[s]

By Lemma 3 this implication is an equivalence, yielding equation (6.2) as required.

The only if direction is a straightforward reversal of this reasoning: PD(φ, α)
implies the persistence of φ, which implies the persistence of PnD(φ, α), which yields
equation (6.1) by Proposition 5.

Since Dbg |= Pn+1
D (φ, α) → PnD(φ, α) by definition, equation (6.1) identifies

PnD(φ, α) as a fixpoint of the P1
D operator, as our initial intuition suggested. In

fact, we can use the constructive proof of Tarski’s fixpoint theorem [15] to establish
that the persistence condition always exists for a given φ and α.

Theorem 7. Given a uniform formula φ and action description predicate α, the
persistence condition PD(φ, α) always exists, and is unique up to equivalence under
the static background theory Dbg.

Proof. Let L be the subset of the Lindenbaum algebra of the static background
theory Dbg containing only sentences uniform in s. L is thus a boolean lattice in
which each element is a set of sentences uniform in s that are equivalent under Dbg.
L is a complete lattice with minimal element the equivalence class of ⊥ and maximal
element the equivalence class of >. Fixing α, P1

D is a function whose domain and
range are the elements of L.

By definition, we have that P1
D(φ, α) → φ, and P1

D is thus a monotone decreasing
function over L. By the constructive proof of Tarski’s fixpoint theorem, P1

D must
have a unique greatest fixpoint less than the equivalence class of φ, which can be
determined by transfinite iteration of the application of P1

D. By Theorem 6, this
fixpoint is the equivalence class of PD(φ, α) under Dbg.

This theorem legitimates the use of the persistence condition for reasoning about
property persistence queries – for any persistence query at situation σ, there is a
unique (up to equivalence) corresponding query that is uniform in σ and is thus
amenable to standard effective reasoning techniques of the situation calculus.

Of course, it remains to actually calculate the persistence condition for a given
φ and α. The definition of PD(φ, α) as a fixpoint suggests that it can be calculated
by iterative approximation, which we discuss in the next section.
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Algorithm 6 Calculate PD(φ, α)
pn⇐ φ
pn1⇐ P1

D(pn, α)
while Dbg 6|= ∀s : pn[s]→ pn1[s] do
pn⇐ pn1
pn1⇐ P1

D[pn, α]
end while
return pn

6.4 Calculating PD

Since we can easily calculate PnD(φ, α) for any n, we have a straightforward algorithm
for determining PD(φ, α): search for an n such that

Dbg |= ∀s :
(
PnD(φ, α)[s]→ Pn+1

D (φ, α)[s]
)

Since we expect PnD(φ, α) to be simpler than Pn+1
D (φ, α), we should look for the

smallest such n. Algorithm 6 presents an iterative procedure for doing just that.

Note that the calculation of P1
D(φ, α) is a straightforward syntactic transforma-

tion, so we do not present an algorithm for it.

6.4.1 Correctness

If Algorithm 6 terminates, it terminates returning a value of pn for which equation
(6.1) holds. By Theorem 6 this value of pn is equivalent to the persistence condition
for φ under α. The algorithm therefore correctly calculates the persistence condition.

In particular, note that equation (6.1) holds when PnD(φ, α) is unsatisfiable for
any situation, as it appears in the antecedent of an implication. The algorithm
thus correctly returns an unsatisfiable condition (equivalent to ⊥) when φ can never
persist under α.

6.4.2 Completeness

Since Theorem 6 is an equivalence, the persistence condition is always the fixpoint of
P1
D. From Theorem 7 this fixpoint always exists and can be calculated by transfinite

iteration. Therefore, the only source of incompleteness in our algorithm will be
failure to terminate. Algorithm 6 may fail to terminate for two reasons: the loop
condition may never be satisfied, or the first-order logical inference in the loop
condition may be undecidable and fail to terminate.

The later case indicates that the background theory Dbg is undecidable. While
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this is a concern, it affects more than just our algorithm – any system implemented
around such an action theory will be incomplete. With respect to this source of in-
completeness, our algorithm is no more incomplete than any larger reasoning system
it would form a part of.

The former case is of more direct consequence to our work. Unfortunately, there
is no guarantee in general that the fixpoint can be reached via finite iteration, which
is required for termination of Algorithm 6.

Indeed, it is straightforward to construct a fluent for which the algorithm never
terminates: consider a fluent F (x, s) that is affected by a single action that makes
it false whenever F (suc(x), s) is false. Letting α be vacuously true, the sequence of
iterations produced by our algorithm would be:

P1
D(F (x, s)) ≡ F (x, s) ∧ F (suc(x), s)

P2
D(F (x, s)) ≡ F (x, s) ∧ F (suc(x), s) ∧ F (suc(suc(x)), s)

...

PnD(F (x, s)) ≡
i=n∧
i=0

F (suci(x), s)

The persistence condition in this case is clearly:

PD(F (x, s)) ≡ ∀y : x ≤ y → F (y, s)

While this is equivalent to the infinite conjunction produced as the limit of iteration
in our algorithm, it will not be found after any finite number of steps.

As discussed in the proof of Theorem 7, P1
D operates over the boolean lattice of

equivalence classes of formulae uniform in s, and the theory of fixpoints requires that
this lattice be well-founded to guarantee termination of an iterative approximation
algorithm such as Algorithm 6. We must therefore identify restricted kinds of basic
action theory for which this well-foundedness can be guaranteed.

The most obvious case is theories in which the action and object sorts are finite.
In such theories the lattice of equivalence classes of formulae uniform in s is finite,
and any finite lattice is well-founded. These theories also have the advantage that the
static domain reasoning performed by Algorithm 6 can be done using propositional
logic, meaning it is decidable and so providing a strong termination guarantee.

Alternately, suppose all successor state axioms and action description predicates
have the following restricted form, where the terms in ȳ are a subset of the terms in
x̄ and ΦF , ΠADP mention no terms other than x̄, a and s:
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F (x̄, do(a, s)) ≡
n∧
i=1

a = ai(ȳi) ∧ ΦF (x̄, a, s)

ADP (x̄, a, s) ≡
n∧
i=1

a = ai(ȳ) ∧ΠADP (x̄, a, s)

Under such theories, applications of P1
D will introduce no new terms into the

query, apart from finitely many action terms ai. The range of P1
D applied to φ is

then a finite subset of the lattice of equivalence classes of formulae uniform in s,
again guaranteed well-foundedness and terminating calculation of PD.

Of course this is a very strong restriction on the structure of the theory, as
the successor state axioms are not able to contain any quantifiers. It does demon-
strate, however, that certain syntactical restrictions on D are able to guarantee
terminating calculation of PD. It seems there should be a more general “syntactic
well-foundedness” restriction that can be applied to these axioms, but we have not
successfully formulated one at this stage.

In a similar vein, suppose that the theory of action is context free [67]. In such
theories successor state axioms have the following form:

F (x̄, do(a, s)) ≡ Φ+
F (x̄, a) ∨

(
F (x̄, s) ∧ ¬Φ−F (x̄, a)

)
The effects of an action are thus independent of the situation it is performed

in. Lin and Levesque [64] demonstrate that such theories have a finite state space,
again ensuring our algorithm operates over a finite lattice and hence guaranteeing
termination. Context free domains are surprisingly expressive; for example, domains
described in the style of STRIPS operators are context free.

From a slightly different perspective, suppose that φ can never persist under α,
so that PD(φ, α) ≡ ⊥. Further suppose that D has the compactness property as in
standard first-order logic. Then the “quantum levels” of Savelli [96] guarantee that
there is a fixed, finite number of actions within which ¬φ can always be achieved. In
this case Algorithm 6 will determine PD(φ, α) ≡ ⊥ within finitely many iterations.

It would also be interesting to determine whether known decidable variants of
the situation calculus (such as [38]) are able to guarantee termination of the fixpoint
construction, or whether more sophisticated fixpoint algorithms can be applied in-
stead of simple iterative approximation. Investigating such algorithms would be a
promising avenue for future research.

The important point here is not that we can guarantee completeness in general,
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but that we have precisely characterised the inductive reasoning necessary to an-
swer property persistence queries, and shown that it can always be replaced by the
evaluation of a uniform formula at the situation in question.

6.4.3 Effectiveness

Our algorithm replaces a single reasoning task based on the full action theory D
with a series of reasoning tasks based on the static background theory Dbg. Is this
a worthwhile trade-off in practice? The following points weigh strongly in favour of
our approach.

First and foremost, we avoid the need for the second-order induction axiom. All
the reasoning tasks can be performed using standard first-order reasoning, for which
there are high-quality automated provers. Second, the calculation of PD performs
only static doing reasoning, which as discussed in Chapter 2 is a comparatively
straightforward task which can be made decidable under certain conditions. Third,
PD(φ, α)[s] is in a form amenable to regression, a standard tool for effective reasoning
in the situation calculus. Fourth, the persistence condition for a given φ and α can
be cached and re-used for a series of related queries about different situations, a
significant gain in amortised efficiency. Finally, in realistic domains we expect many
properties to fail to persist beyond a few situations into the future, meaning that
our algorithm will require few iterations in a large number of cases.

Of course, we also inherit the potential disadvantage of the regression operator:
the length of PD(φ, α) may be exponential in the length of φ. As with regression,
our experience has been that this is rarely a problem in practice, and is more than
compensated for by the reduced complexity of the resulting reasoning task.

6.4.4 Applications

The persistence condition is readily applicable to the example persistence query
problems given in Section 6.2. All of the transformed queries can then be answered
using standard regression.

Goal Impossibility: Given a goal G, establish that there is no legal situation
in which that goal is satisfied:

D |= PD(¬G,Legal)[S0]

The persistence condition of ¬G with respect to action legality allows goal impossi-
bility to be checked easily.
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Goal Futility: Given a goal G and situation σ, establish that the goal cannot
be satisfied in any legal future situation from σ:

D |= PD(¬G,Legal)[σ]

Precisely the same formula is required for checking goal impossibility and goal futil-
ity. This highlights the advantage of re-using the persistence condition at multiple
situations. Our approach makes it feasible for an agent to check for goal futility
each time it considers performing an action, and avoid situations that would make
its goals unachievable.

Checking State Constraints: Given a state constraint SC, show that the
constraint holds in every legal situation:

D |= PD(SC,Legal)[S0]

However, since we want a state constraint to always persist, it must satisfy the
following equivalence:

Dbg |= φ ≡ PD(φ,Legal)

If this equivalence does not hold then PD(φ,Legal) indicates the additional con-
ditions that are necessary to ensure that φ persists, which may be used to adjust
the action theory to enforce the constraint. This particular application has strong
parallels to the approach to state constraints developed by Lin and Reiter [66].

Need for Cooperation: Given an agent agt, goal G and situation σ, establish
that no sequence of actions performed by that agent can achieve the goal:

D |= PD(¬G,MyAction)[σ]

Knowledge with Hidden Actions: In Chapter 7 we will develop a regression
rule for knowledge that uses the persistence condition to account for arbitrarily-long
sequences of hidden actions. While we defer the details to that chapter, the general
form of the rule is:

RD(Knows(φ, do(a, s))) def= Knows(RD(PD(φ,Hidden), a), s)
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6.5 Discussion

In this chapter we have developed an algorithm that transforms property persistence
queries, a very general and useful class of situation calculus query, to a form that
is amenable to standard techniques for effective reasoning in the situation calculus.
The algorithm replaces a second-order induction axiom with a meta-level fixpoint
calculation based on iterative application of the standard regression operator. It is
shown to be correct, and also complete in some interesting cases.

Our approach generalises previous work on universally-quantified queries in sev-
eral important ways. It can consider sequences of actions satisfying a range of
conditions, not just the standard ordering over action possibility, enabling us to
treat problems such as need for cooperation and knowledge with hidden actions. It
can establish that properties persist in the future of an arbitrary situation, not nec-
essarily the initial situation, enabling us to answer the question of goal futility. The
results of calculating the persistence condition can be cached, allowing for example
the goal futility question to be efficiently posed on a large number of situations once
the persistence condition has been calculated.

Most importantly for the remainder of this thesis, we have factored out the
inductive reasoning required to answer these queries. Work on increasing the effec-
tiveness of this inductive reasoning, and on guaranteeing a terminating calculation
in stronger classes of action theory, can now proceed independently from the devel-
opment of formalisms that utilise persistence queries. We will henceforth use PD as
a kind of “black box” operator to formulate regression rules within our framework,
dropping the explicit D subscript as we do for the regression operator.

As noted in Section 6.1, our use of fixpoints in this chapter has much in common
with the study of properties of ConGolog programs by [14, 18]. Indeed, a property
persistence query is equivalent to a safety query stating that the property φ never
becomes false during execution of the following program:

δPα
def= (π(a, α[a]? ; a))∗

Formally:

D |= ∀s : σ ≤α s → φ[s]

iff

D ∪Dgolog |= ∀s, δ : Trans∗(δPα, σ, δ, s) → φ[s]
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Since we intend to use persistence queries as part of a larger reasoning appa-
ratus, rather than as a stand-alone query, we cannot directly leverage the existing
work on verifying ConGolog programs. However, given the similarity between the
approaches, we are confident that advances in reasoning effectively about ConGolog
programs will also advance our ability to effectively answer persistence queries.

This chapter has thus significantly increased the scope of queries that can be
posed when building systems upon the situation calculus. In the coming chapters,
the persistence condition operator will allow us to factor out certain inductive as-
pects of reasoning, treating them as separate, well-defined components of the overall
reasoning machinery.
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Chapter 7
Knowledge with Hidden Actions

This chapter develops a new theory of knowledge in the situation calculus that
directly leverages the agent-local perspective developed in Chapter 4.

Existing accounts of epistemic reasoning in the situation calculus require that
whenever an action occurs, all agents know that an action has occurred. This de-
mands a level of synchronicity that is unreasonable in many multi-agent domains. In
asynchronous domains, each agent’s knowledge must instead account for arbitrarily-
long sequences of hidden actions. This requires a second-order induction axiom
which precludes the use of regression for effective automated reasoning. It also
make it difficult for agents to reason about their own knowledge, as they may not
have enough information to formulate an appropriate query.

To overcome this limitation we combine two of the contributions developed in
preceding chapters - the explicit representation of an agent’s local perspective from
Chapter 4, and the persistence condition meta-operator from Chapter 6 - to formu-
late an account of knowledge in the situation calculus that can faithfully represent
the hidden actions inherent in asynchronous domains while maintaining a regression
rule for effective automated reasoning.

We begin by developing an axiomatisation of knowledge based explicitly on each
agent’s local view. This axiomatisation is shown to respect our intuitions about
how knowledge should behave, and to preserve important properties of the agent’s
epistemic state through the occurrence of actions. Moreover, our formulation is
elaboration tolerant, automatically preserving these properties in the face of more
complex information-producing actions, such as guarded sensing actions, that can
easily invalidate these properties if not axiomatised in the appropriate way.

To formulate a regression rule for knowledge, we appeal to the persistence condi-
tion operator to factor out the inductive reasoning required for dealing with hidden
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actions. We propose a new regression rule that is sound and complete with respect to
our axiomatisation of knowledge, and demonstrate how it can be used by a situated
agent to reason about its own knowledge in a straightforward manner.

The end result is a significantly more general and robust theory of knowledge in
the situation calculus that still permits an effective reasoning procedure.

The chapter proceeds as follows: after introducing more detailed background ma-
terial on epistemic reasoning in the situation calculus in Section 7.1, we develop the
axioms for our new observation-based account of knowledge in Section 7.2. Section
7.3 explores the properties of our formalism with reference to the standard account
of knowledge. Section 7.4 develops a regression rule for our formalism using the
persistence condition operator, while Section 7.5 gives a brief example of its use for
reasoning about a partially-observable domain. Section 7.6 explores some avenues
for combining our formalism with other recent developments in the situation calculus
literature, while Section 7.7 concludes with a general discussion and summary.

7.1 Background

Recall from Section 2.3 that the dynamics of knowledge in the situation calculus
are specified using an additional set of axioms DK , which define the behaviour of
a special knowledge-fluent K. In the standard account of knowledge, based on the
work of Scherl and Levesque [98] and incorporating concurrent actions and multiple
agents [97, 106], the axioms in DK are the following:

Init(s)→
(
K(agt, s′, s) ≡ K0(agt, s′, s)

)
(7.1)

K(agt, s′′, do(c, s)) ≡ ∃s′ : s′′ = do(c, s′) ∧K(agt, s′, s)

∧ Legal(c, s′) ∧ ∀a ∈ c :
(
actor(a) = agt → SR(a, s) = SR(a, s′)

)
(7.2)

Equation (7.1) ensures that the agents begin with their knowledge as specified by
the initial knowledge fluent K0. In fact, the work of [97, 98, 106] does not actually
use an explicit K0 fluent and instead specifies initial knowledge directly using K.
The introduction of K0 in this case is purely cosmetic, but it will make comparisons
with our new formalism easier.

Equation (7.2) takes the form of a standard successor state axiom for the K

fluent. It ensures that s′′ is considered a possible alternative to do(c, s) when s′′ is
the result of doing the same actions c in a situation s′ that is considered a possible
alternative to s. It must furthermore have been possible to perform those actions in
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s′, and the sensing results must match for each action that was carried out by the
agent in question. Thus an agent’s knowledge after the occurrence of an action is
completely determined by the combination of its knowledge before the action, and
the sensing results from the action.

Definition 22. We will denote by DstdK the axioms of the standard account of knowl-
edge due to [97, 98], as detailed in equations (7.1,7.2) above.

While powerful, this knowledge-representation formalism has an important lim-
itation: it is fundamentally synchronous. Each agent is assumed to have full knowl-
edge of all actions that have occurred – in other words, all actions are assumed to
be public. While suitable for some domains, there are clearly many multi-agent
domains where achieving total awareness of actions would be infeasible. A major
contribution of this chapter is a more flexible formalism for knowledge that can be
applied to a much wider range of domains.

7.1.1 Reasoning about Knowledge

A key contribution of Scherl and Levesque [98] was showing how to apply the regres-
sion operator to formulae containing the Knows macro, allowing it to be treated
syntactically as if it were a primitive fluent. This means that epistemic queries can
be approached using standard reasoning techniques of the situation calculus. Al-
though we have changed the notation somewhat to account for concurrent actions
and to foreshadow the techniques we will develop in Section 7.4, their definition
operates as follows. First, define the results of a concurrent action to be the set of
action#result pairs for all primitive actions performed by the agent in question:

res(agt, c, s) def= {a#SR(a, s) | a ∈ c ∧ actor(a) = agt}

This definition is then used to formulate a regression rule as follows:

R(Knows(agt, φ, do(c, s)) def= ∃y : y = res(agt, c, s)

∧Knows(agt, [Legal(c) ∧ res(agt, c) = y]→ R(φ[do(c, s)]), s) (7.3)

This works by collecting the sensing results from each action performed by the
agent into the set y, then ensuring matching sensing results in every situation con-
sidered possible. It expresses the knowledge of the agent after a concurrent action
in terms of what it knew before the action, along with the information returned by
the action. This technique relies heavily on the fact that all actions are public, since
it requires every agent’s knowledge to be updated in response to every action.
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As with the non-epistemic case, repeated applications of R can transform a
knowledge query into one that is uniform in the initial situation. While it would be
valid to then expand the Knows macros and handle the query using first-order logic,
in practice the reasoning procedure would leave Knows intact and use a specialised
prover based on modal logic.

7.1.2 Accessibility Properties

A fundamental aspect of epistemic reasoning is identifying certain properties of the
K relation (in modal logic terminology, the agent’s accessibility relation) that guar-
antee certain desired axioms of knowledge. The most commonly-used accessibility
restrictions are:

Reflexivity: K(agt, s, s)

Transitivity: K(agt, s2, s1) ∧K(agt, s3, s2)→ K(agt, s3, s1)

Euclidean: K(agt, s2, s1) ∧K(agt, s3, s1)→ K(agt, s3, s2)

Symmetry: K(agt, s2, s1)→ K(agt, s1, s2)

The first three of these properties are directly equivalent to asserting three important
axioms about the knowledge operator:

Correct Knowledge: Knows(agt, φ)→ φ

Positive Introspection: Knows(agt, φ)→ Knows(agt,Knows(agt, φ))

Negative Introspection: ¬Knows(agt, φ)→ Knows(agt,¬Knows(agt, φ))

In particular, the restriction of K to be reflexive ensures that the logic is one of
knowledge rather than belief ; the agents cannot know statements that are not true
in the real world.

One of the major theorems of [98] is that if one or more of these properties hold
for the K relation in the initial situation, then they will hold for the K relation in
all future situations. This means that the above axioms of knowledge are preserved
through the occurrence of actions, an important confirmation that the semantics of
knowledge have been axiomatised correctly; the occurrence of an action should not,
for example, remove an agent’s ability to introspect its own knowledge.
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7.1.3 Extending Knowledge Theories

As we discussed in Section 4.1, different kinds of information-generating actions
are typically modelled by directly modifying the successor state axiom for K [54,
77, 106–108]. The axiom grows from the form presented in equation (7.2) to look
something like the following:

K(agt, s′′, do(a, s)) ≡ ∃s′ : s′′ = do(a, s) ∧K(agt, s′, s)∧

a = A1(x̄1) → Φ1(x̄1, s, s
′)

. . .

a = An(x̄n) → Φn(x̄1, s, s
′)

Here each formula Φi encodes the particular semantics of action Ai, typically
restricting s′ to satisfy some formula if and only if it is satisfied at s. Unfortunately,
these extensions do not in general maintain the important theorems of the stan-
dard account of knowledge [98]; there is no guarantee that the modified axioms will
preserve accessibility properties of K, or will permit a regression rule for Knows.

For example, Petrick [77] extends the approach of [98] to include guarded sensing
actions. These actions cause the agent to learn that some formula φ holds, but only
if an additional guard formula ψ also holds in the world. They are included in the
axiom for K as follows:

a = sensei →
[
ψi(s) → φi(s) ≡ φi(s′)

]
It is straightforward to demonstrate that the modified successor state axiom is no

longer guaranteed to preserve the accessibility properties identified in Section 7.1.2,
although it is possible to syntactically restrict ψ to regain this important result [77].

As another example, consider the alternate successor state axiom for K proposed
by Lespérance et al. [54], in one of the few existing works in the situation calculus
that does not assume a synchronous domain:

K(agt, s′′, do(a, s)) ≡ ∃s′ : K(agt, s′, s)

∧ (actor(a) 6= agt → s′ ≤actor(a) 6=agt s′′))

∧ (actor(a) = agt → ∃s∗ :
[
s′ ≤actor(a) 6=agt s∗∧

s′′ = do(a, s∗) ∧ Poss(a, s∗) ∧ sr(a, s) = sr(a, s∗))
]

In order to account for the actions of other agents being completely hidden, this
axiom must universally quantify over situation terms. It is therefore incompati-
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ble with the standard regression rule for knowledge, and [54] offers no reasoning
procedure other than general second-order theorem proving.

The standard approach to formalising the local information available to each
agent, by directly modifying the successor state axiom for knowledge, is clearly not
elaboration tolerant – it is easy to invalidate important properties of the formalism
by changing the successor state axiom for K. As we shall demonstrate in this
chapter, by basing our approach on an explicit, separately-axiomatised account of the
local perspective of each agent, our formulation robustly maintains both accessibility
property preservation and a regression rule regardless of the specific semantics of
information-producing actions.

7.2 Knowledge and Observation

In this section we develop the axioms for our new formulation of knowledge, which is
based on the explicit account of each agent’s local perspective that we developed in
Chapter 4. We begin from one of the basic tenets of epistemic reasoning, as described
by [39]. An agent’s knowledge at any particular time must depend solely on its local
history: the knowledge that it started out with combined with the observations it
has made since then .

Given an explicit account of the observations made by each agent, the required
semantics of the K relation are clear: K(agt, s′, s) must hold whenever s′ is legal,
both s and s′ would result in the same view for the agent, and s and s′ are rooted
at K0-related initial situations:

K(agt, s′, s) ≡ Legal(s′)∧V iew(agt, s′) = V iew(agt, s)∧K0(root(s′), root(s)) (7.4)

In essence, this is a direct encoding into the situation calculus of the definitions
of knowledge from the classic epistemic reasoning literature [25, 39, 74].

While a wonderfully succinct definition of how knowledge should behave, this
formulation cannot be used directly in a basic action theory. The dynamics of
fluent change must be specified by a successor state axiom, so we must formulate a
successor state axiom for the K fluent which enforces the above equivalence.

For notational convenience, let us first introduce an action description predicate
LbU (for “legal but unobservable”) indicating that the actions c are legally performed
in s, but no observations will be made by agt if they occur:

LbU(agt, c, s) ≡ Legal(c, s) ∧Obs(agt, c, s) = {} (7.5)
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By stating that s ≤LbU(agt) s
′, we assert that agt would make no observations

were the world to move from situation s to s′. This means that the agent’s view
in both situations would be identical, so if it considers s possible then it must also
consider s′ possible. Following this intuition, we propose the following successor
state axiom to capture the desired dynamics of the knowledge fluent:

K(agt, s′′, do(c, s)) ≡
[
Obs(agt, c, s) = {} → K(agt, s′′, s)

]
∧
[
Obs(agt, c, s) 6= {} → ∃c′, s′ : Obs(agt, c′, s′) = Obs(agt, c, s)

∧Legal(c′, s′) ∧K(agt, s′, s) ∧ do(c′, s′) ≤LbU(agt) s
′′ ]

(7.6)

If c was totally unobservable, the agent’s state of knowledge does not change.
Otherwise, it considers possible any legal successor to a possible alternate situation
s′ that can be brought about by an action c′ yielding identical observations. It also
considers possible any future of such a situation in which is would make no further
observations. To reiterate: unlike the standard successor state axiom from equation
(7.2), our new formalism requires agents to consider any possible future situation
in which they would make no further observations, which is necessary in order to
correctly specify knowledge in asynchronous domains.

It remains to specify K in the initial situation. The relation K0 defines knowledge
before any actions have occurred, but the agents must consider the possibility that
some hidden actions have occurred. In other words, we must include situations where
root(s) ≤LbU(agt) s in the K-relation for initial situations. We therefore propose the
following axiom:

Init(s)→
[
K(agt, s′′, s) ≡ ∃s′ : K0(agt, s′, s) ∧ s′ ≤LbU(agt) s

′′)
]

(7.7)

Definition 23. We will denote by DobsK the axioms for our new observation-based
semantics for knowledge, as detailed in equations (7.6,7.7) above.

These axioms suffice to ensure that knowledge behaves as we require: two situ-
ations will be related by K(agt, s′, s) if and only if they result in identical views for
that agent, s′ is legal, and their root situations were initially related.

Theorem 8. For any agent agt and situations s and s′′:

D ∪DobsK |= K(agt, s′′, s) ≡

Legal(s′′) ∧ V iew(agt, s′′) = V iew(agt, s) ∧K0(root(s′′), root(s))

Proof Sketch. For the if direction we establish each of the three conjuncts individ-
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ually. The root case is trivial since equation (7.6) always expresses K(s′′, do(c, s))
in terms of K(s′, s), while equation (7.7) relates K for initial situations back to K0.
The Legal case relies on the fact that LbU implies Legal, while the V iew case relies
on the fact that s ≤LbU s′ → V iew(s) = V iew(s′). For the only-if direction we
show how to construct an s′ satisfying the ∃s′ parts of equations (7.6,7.7). For a
detailed proof see Appendix A.

Using this new formulation, an agent’s knowledge is completely decoupled from
the global notion of actions, instead depending only on the local information that
it has observed. Of course, this must be combined with a specific axiomatisation of
how the Obs function behaves. Any of the axiomatisations described in Chapter 4
can be used, and our account of knowledge will be directly applicable.

As a demonstration of the correctness of their axioms, Scherl and Levesque [98]
prove five properties of their formalism: that knowledge-producing actions have only
knowledge-producing effects; that unknown fluents remain unknown by default; that
knowledge incorporates the results of sensing actions; that known fluents remain
known by default; and that agents have knowledge of the effects of their actions.

However, the intuition behind these properties depends heavily on the assump-
tion of public actions and on the separation of actions into two classes: knowledge-
producing actions that only return sensing information, and ordinary actions that
only affect the state of the world. In asynchronous multi-agent domains, these re-
strictions cannot be meaningfully applied.

For example, it is entirely possible that a knowledge-producing action and an
ordinary action are performed concurrently by two different agents, so the results
of a sensing action might immediately be made invalid. Moreover, suppose that an
agent performs an action to make a formula φ true, but there is a series of hidden
actions that could subsequently make φ false. The agent cannot meaningfully claim
to know φ, since it could become false without updating the local view of that agent.

The proofs used in [98] all hinge on showing that the situations K-related to
do(a, s) are precisely the “correct” ones, where correctness if formulated in terms of
the preconditions and effects of a. We claim that in our formulation, the “correct”
situations to be related to do(c, s) are precisely those that are legal and have the
same view, and the validity of Theorem 8 provides sufficient justification for the
correctness of our knowledge axioms.
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7.3 Properties of Knowledge

With the basic axioms in place, let us study some properties of our formalism in
greater detail. We begin by comparing it to the standard account of knowledge due
to Scherl and Levesque [98]. Its basic assumption that “all agents are aware of all
actions” is captured in our observation-based formulation using equations (4.2,4.3)
from Chapter 4, which we repeat here for convenience:

a ∈ Obs(agt, c, s) ≡ a ∈ c

a#r ∈ Obs(agt, c, s) ≡ a ∈ c ∧ actor(a) = agt ∧ SR(a, s) = r

That is, an agent observes all actions that occur, and additionally observes the
sensing results of all actions that it performs. If these definitions are used, our new
account of knowledge will behave identically to the standard account:

Theorem 9. Suppose Dad contains equations (4.2,4.3) as definitions of the Obs

function, then for any legal situation terms σ and σ′:

D ∪DstdK |= K(agt, σ′, σ) iff D ∪DobsK |= K(agt, σ′, σ)

Proof. Equations (4.2,4.3) mean Obs(agt, c, s) cannot be empty for c 6= {}, so s = s′

iff s ≤LbU(agt) s
′. Since we restrict our attention to legal situations, we can substitute

⊥ for Obs(agt, c, s) = {} and > for Obs(agt, c, s) 6= {} into equations (7.6,7.7) to
obtain the following:

K(agt, s′′, do(c, s)) ≡
[
⊥ → K(agt, s′′, s)

]
∧
[
> → ∃c′, s′ : Obs(agt, c′, s′) = Obs(agt, c, s)

∧Legal(c′, s′) ∧K(agt, s′, s) ∧ do(c′, s′) = s′′
]

Init(s)→≡
[
K(agt, s′′, s) ≡ ∃s′ : K0(agt, s′, s) ∧ s′ = s′′)

]
Which further simplify to:

K(agt, s′′, do(c, s)) ≡ ∃c′, s′ : Obs(agt, c′, s′) = Obs(agt, c, s)

∧ Legal(c′, s′) ∧K(agt, s′, s) ∧ do(c′, s′) = s′′ (7.8)

Init(s)→≡
[
K(agt, s′′, s) ≡ K0(agt, s′′, s)

]
(7.9)
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Using equations (4.2,4.3), it is straightforward to show that:

Obs(agt, c′, s′) = Obs(agt, c, s) ≡

c = c′ ∧ ∀a ∈ c : actor(a) = agt→
[
SR(a, s) = SR(a, s′)

]
Equations (7.8,7.9) are therefore equivalent to equations (7.1,7.2) fromDstdK , meaning
that K behaves the same under both theories.

Having established that our account subsumes the standard “public actions”
account of knowledge, we can also show that it maintains many of its desirable
properties in the general case. One of the fundamental results in [98] is that if
the initial knowledge relation K0 is reflexive, symmetric, transitive or Euclidean,
then the K relation has these properties for any situation. In our formalism, such
preservation of accessibility properties follows immediately from Theorem 8 and the
reflexive, symmetric, transitive and Euclidean nature of the equality operator.

Theorem 10. If the K0 relation is restricted to be reflexive, transitive, symmetric
or Euclidean, then the K relation defined by DobsK will satisfy the same restrictions
at every legal situation.

Proof. Each follows directly from Theorem 8 and the properties of equality. We will
take the transitive case as an example; other cases are virtually identical.

Suppose that K0 is transitive, and we have legal situations s1, s2, s3 such that
K(agt, s2, s1) and K(agt, s3, s2). Then by Theorem 8 we have the following:

K0(root(s2), root(s1))

K0(root(s3), root(s2))

V iew(agt, s1) = V iew(agt, s2)

V iew(agt, s2) = V iew(agt, s3)

From the transitivity of K0 we can conclude that K0(root(s3), root(s1)). From the
transitivity of equality we can conclude that V iew(agt, s1) = V iew(agt, s3). Since
s3 is restricted to be legal, we have enough to satisfy the RHS of the equivalence in
Theorem 8, so K(agt, s3, s1) and K is therefore transitive.

That these properties hold regardless of the axiomatisation of Obs is a compelling
argument in favour of our approach. As discussed in Section 7.1.3, certain kinds of
sensing action can easily invalidate these properties if not axiomatised carefully. It
is therefore worth considering such cases in more detail.
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The problematic sensing actions identified in [77] are guarded sensing actions,
which update K(agt, s′, s) according to the following axiom:

K(agt, s′′, do(a, s)) ≡ ∃s′ : s′′ = do(a, s) ∧K(agt, s′, s) ∧ . . .

a = senseφ,ψ →
[
ψ(s) → φ(s) ≡ φ(s′)

]
The problem with this approach is that although the agent will learn φ if the

guard ψ is true, it cannot conclude that the guard was false by virtue of not learning
φ. Since the agent’s local perspective is only modelled implicitly, it has no way of
detecting that the action failed to produce its sensing result. This means symmetry
of the K relation may not be preserved.

To ensure that symmetry is preserved through action, it is necessary to axioma-
tise these sensing actions in such a way that the status of the guard formula itself
also becomes known. While this can be achieved by syntactically restricting the
formulae, as in [77], our approach of explicitly representing the observations made
by each agent avoids the problem automatically.

Consider how guarded sensing actions can be axiomatised using explicit obser-
vations, as discussed in Section 4.3.3 and repeated below for convenience:

senseφ,ψ#T ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c ∧ actor(senseφ) = agt ∧ ψ(s) ∧ φ(s)

senseφ,ψ#F ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c ∧ actor(senseφ) = agt ∧ ψ(s) ∧ ¬φ(s)

senseφ,ψ ∈ Obs(agt, c, s) ≡ senseφ,ψ ∈ c ∧ actor(senseφ) = agt ∧ ¬ψ(s)

An agent using our formalism can therefore conclude, by virtue of not receiving
a sensing result from senseφ,ψ, that the guard condition must not hold. This is
sufficient to maintain symmetry of the knowledge accessibility relation as guaranteed
by Theorem 10.

Our formalism is thus a proper generalisation of the standard account of knowl-
edge in the situation calculus. It is also an elaboration tolerant generalisation,
maintaining important properties of the axiomatisation as more complex models
of sensing and observability are introduced. To demonstrate the power gained by
such generalisation, Section 7.5 shows how to use our formalism to model a domain
in which agents can only observe actions performed in the same room as them.

As we will demonstrate in the next section, we can also formulate a regression
rule that is applicable regardless of the particular observability axioms in use. To
overcome the problems that prevented the development of such a rule in [54], we
use the persistence condition operator to reason about arbitrarily-long sequences of
hidden actions.
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7.4 Reasoning about Knowledge

The final aspect of our new account of knowledge is to extend the techniques for
effective reasoning in the situation calculus to handle the modified formalism – that
is, to develop a regression rule for Knows.

The appearance of ≤LbU(agt) in equation (7.6) means that our new successor
state axiom universally quantifies over situations, so the regression technique devel-
oped in [98] cannot be used directly. We must appeal to the persistence condition
meta-operator introduced in Chapter 6 to handle the inductive component of this
reasoning, by transforming the quantification into a uniform formula so that stan-
dard regression techniques can be applied.

We propose the following as the regression rule for Knows under our formalism:

R(Knows(agt, φ, do(c, s)) def= ∃o : Obs(agt, c, s) = o

∧ [o = {} → Knows(agt, φ, s)]

∧
[
o 6= {} → Knows(agt,∀c′ : Obs(agt, c′) = o

∧ Legal(c′)→ R(P(φ,LbU(agt)), c′), s)
]

(7.10)

Note the similarity to the standard regression rule for knowledge in equation
(7.3). New in our version are: the replacement of the res macro with an explicit,
flexible definition of what the agent has observed; explicit handling of the case when
the agent makes no observations; and use of the persistence condition to account for
arbitrarily-long sequences of hidden actions.

As required for a regression rule, equation (7.10) reduces a knowledge query at
do(c, s) to a knowledge query at s. It is also intuitively appealing: to know that φ
holds, the agent must know that in all situations that agree with its observations,
φ cannot become false without it making some further observation – this is the
meaning of P(φ,LbU(agt)) in the above, to express the agent’s knowledge that “if
φ were to become false, I would notice”.

We must also specify a regression rule for Knows in the initial situation, as
equation (7.7) also uses the ≤LbU(agt) ordering. This clause produces an expression
in Knows0 at S0, meaning that it can be handled by epistemic reasoning about the
initial situation only:

R(Knows(agt, φ, S0)) def= Knows0(agt,R(P(φ,LbU(agt))[S0])−1, S0) (7.11)

The use of P here is similar to its use in the previous regression rule. The use
of R(φ[S0])−1 is required to transform nested knowledge formulae into nested initial
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knowledge formulae. For example:

Knows(A,Knows(B,φ), S0) ⇒ Knows0(A,Knows0(B,φ), S0)

When the enclosed formula φ does not contain nested knowledge macros, regressing
it at S0 and then suppressing the situation term will leave it unchanged.

Theorem 11. Given a basic action theory D and a uniform formula φ:

D ∪DobsK |= Knows(agt, φ, s) ≡ R(Knows(agt, φ, s))

Proof Sketch. In the do(c, s) case, we proceed by expanding the definition for Knows

using our new successor state axiom for K, collecting sub-formulae that match the
form of the Knows macro, and using regression and the persistence condition to
render the resulting expressions uniform in s. In the base case, we apply the persis-
tence condition to an expansion of Knows at S0 to produce the desired result. For
a detailed proof see Appendix A.

These regression rules thus enable us to handle knowledge queries in our formal-
ism using a standard regression-based approach, appealing to the persistence condi-
tion operator to perform the necessary inductive reasoning in an effective manner.

While this reasoning method is suitable for modelling and simulation purposes,
it would be unreasonable for a situated agent to ask “do I know φ in the current
situation?” using the situation calculus query D |= Knows(agt, φ, σ). As discussed
in Chapter 4, an agent cannot be expected to have the full current situation σ. It will
however have its current view v and can construct a query about its own knowledge
as follows:

D ∪DK |= ∀s : V iew(agt, s) = v ∧ root(s) = S0 ∧ Legal(s)→ Knows(agt, φ, s)

Such a query universally quantifies over situations and so cannot be handled
using regression. It is also not in a form amenable to the persistence condition
operator, so the agent has no means of effectively answering such a query.

However, we should expect from Theorem 8 that the quantification over situa-
tions is unnecessary in this case – after all, any situation with the same view for
that agent should result in it having the same knowledge. Let us explicitly define
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knowledge with respect to a view as follows:

Knows(agt, φ, v) def=

∀s : V iew(agt, s) = v ∧ root(s) = S0 ∧ Legal(s)→ Knows(agt, φ, s)

We can then modify the regression rules in equations (7.10,7.11) to work directly
on formulae of this form. The resulting rules are actually simpler than for regression
over situations, as there are no empty observations in a view. The result is:

R(Knows(agt, φ, o · v)) def= Knows(agt,∀c : Obs(agt, c) = o

∧ Legal(c)→ R(P(φ,LbU(agt)), c), v) (7.12)

R(Knows(agt, φ, ε)) def= Knows0(agt,R(P(φ,LbU(agt))[S0])−1, S0) (7.13)

Using regression in this way, an agent can reduce the query Knows(agt, φ, v) to an
equivalent query about its knowledge in the initial situation.

Theorem 12. Given a basic action theory D and a uniform formula φ:

D ∪DobsK |= Knows(agt, φ, v) ≡ R(Knows(agt, φ, v))

Proof Sketch. The proof hinges on a simple corollary of Theorem 8: that situations
with the same root and same view entail the same knowledge:

D ∪DobsK |= ∀s, s′, s′′ : root(s) = root(s′) ∧ V iew(s) = V iew(s′)

∧K(agt, s′′, s)→ K(agt, s′′, s′)

We can then proceed by induction over views. For the ε and o · v cases we split
on whether there exists a situation having that view. If no such situation exists,
we show that the regression rules (7.12, 7.13) generate a formula that is vacuously
true, as an invalid view causes anything to be known. If such a solution does exist,
we select an arbitrary witness and demonstrate that rules (7.12, 7.13) generate an
equivalent formula to rules (7.10,7.11) using that witness. By the above corollary,
this is enough to establish equivalence for any such situation. For a detailed proof
see Appendix A.

Our formalism thus allows agents to reason effectively about their own knowledge
using only their local information, even in asynchronous domains where they do not
know how many actions have been performed.

It is worth re-iterating that our regression rules are no longer straightforward
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syntactic transformations – rather, they involve a fixpoint calculation to generate
P(φ,LbU(agt)). Can this really be considered an effective reasoning technique? The
previous work on the persistence condition meta-operator discussed the advantages
of this approach in detail. The primary advantage is that this form of reasoning can
be performed at all, as the alternative is general second-order theorem proving.

Of course, the ultimate proof is in the implementation. We have implemented a
preliminary version of our technique and used it to verify the examples found in the
following section. For details on obtaining the code, see Appendix B.

We close this section with a formal statement of a simple but important point:
the persistence condition is not required when reasoning in synchronous domains.
It is straightforward to show that P(φ,LbU(agt)) in synchronous domains is always
equivalent to φ. The regression rules in equations (7.10,7.11) then reduce to purely
syntactic manipulations.

We thus do not introduce unnecessary complications for domains in which effec-
tive reasoning procedures already exist, while extending the reach of our formalism
into richer domains where some inductive reasoning is required.

Theorem 13. Let Dsync be a synchronous basic action theory, then:

Dsync |= ∀s, agt : φ[s] ≡ P(φ,LbU(agt))[s]

Proof. By definition, we have:

Dsync |= ∀agt, c, s : Legal(c, s) → Obs(agt, c, s) 6= {}

Recall from equation (7.5) that:

LbU(agt, c, s) ≡ Legal(c, s) ∧Obs(agt, c, s) = {}

So clearly:
Dsync |= ∀agt, c, s : LbU(agt, c, s) ≡ ⊥

The definition of P1(φ,LbU(agt)) will then produce:

P1(φ,LbU(agt)) ≡ φ ∧ ∀c : ⊥ → R(φ, c) ≡ φ

The calculation of P thus terminates immediately at the first iteration, giving
P(φ,LbU(agt)) equal to P1(φ,LbU(agt)), which is equivalent to φ as desired.
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7.5 An Illustrative Example

We now give a brief demonstration of our formalism in action, using it to model the
“party invitation” domain outlined in Chapter 1. We adopt an explicit axiomatisa-
tion of partial observability based on the CanObs/CanSense predicates introduced
in Section 4.4.1.

The fluents of interest in this domain are the location of the party (the function
loc) and whether each agent is in the room (the predicate InRoom). The action
read reads the invitation and returns the location of the party, while the non-sensing
actions enter and leave cause the agents to move in/out of the room. The read action
is only observed by agents who are in the room. This domain can be summarised
by the following axioms:

loc(S0) = C

loc(do(c, s)) = l ≡ loc(s) = l

InRoom(Alice, S0) ≡ InRoom(Bob, S0) ≡ >

InRoom(agt, do(c, s)) ≡ enter(agt) ∈ c ∨ InRoom(agt, s) ∧ leave(agt) /∈ c

Poss(enter(agt), s) ≡ ¬InRoom(agt, s)

Poss(leave(agt), s) ≡ InRoom(agt, s)

Poss(read(agt), s) ≡ InRoom(agt, s)

SR(read(agt), s) = r ≡ r = loc(s)

∀agt, l : ¬Knows0(agt, loc = l, S0)

∀agt1, agt2, l : Knows0(agt1,¬Knows0(agt2, loc = l), S0)

∀agt : Knows0(agt, InRoom(Alice) ∧ InRoom(Bob), S0)

CanObs(agt, leave(agt′), s) ≡ CanObs(agt, enter(agt′), s) ≡ >

CanSense(agt, leave(agt′), s) ≡ CanSense(agt, enter(agt′), s) ≡ ⊥

CanObs(agt, read(agt′), s) ≡ InRoom(agt′, s)

CanSense(agt, read(agt′), s) ≡ agt = agt′

The following are examples of knowledge queries that can be posed in our formal-
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ism, a brief explanation of their outcome, and a demonstration of how they can be
answered using our new regression rules. Each has been verified by the preliminary
implementation of our reasoning engine.

Example 1. Initially, Alice doesn’t know where the party is:

D ∪DobsK |= ¬∃l : Knows(A, loc = l, S0)

It is given that ¬∃l : Knows0(A, loc = l, S0), and the only way for her to learn
such information is by performing a read action. Since she would always observe
such an action, she cannot have learnt the party’s location as a result of hidden
actions, and the example is entailed. Formally:

P(loc = l, LbU(A)) ⇒ loc = l

R(¬∃l : Knows(A, loc = l, S0)) ⇒ ¬∃l : Knows0(A,R((loc = l)[S0])−1, S0)

Note that the calculation of this persistence condition is trivial since the location
of the party cannot change. The nested regression of loc = l at S0 leaves the formula
unchanged. The query thus regresses to:

¬∃l : Knows0(A, loc = l, S0)

This is entailed by the domain.

Example 2. After reading the invitation, Bob will know where the party is:

D ∪DobsK |= Knows(B, loc = C, do({read(B)}, S0))

The sensing results of the read action inform Bob of the location of the party.
Since this location cannot change after any sequence of hidden actions, he can be
sure of the party’s location. Formally, using the fact that Obs(B, {read(B)}, s) =
{read(B)#loc(s)}:

R(Knows(B, loc = C, do({read(B)}, S0))) ⇒

∃o : o = Obs(B, {read(B)}, S0)∧

Knows(B, ∀c′ : Legal(c′) ∧Obs(B, c′) = o→ R(P(loc = C,LbU(B)), c′), S0)

Since R(P(loc = C,LbU(Bob)), c′) reduces to loc = C, and loc(S0) = C is given,
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this simplifies to:

Knows(B, ∀c′ : Legal(c′) ∧Obs(B, c′) = {read(B)#C} → loc = C, S0)

Since the only possible value of c′ that satisfies the antecedent is {read(B)}, we
can insert the definitions of Legal and Obs to obtain:

Knows(B, InRoom(B) ∧ loc = C → loc = C, S0)

This tautology is clearly entailed by the domain.

Example 3. Initially, Bob knows that Alice doesn’t know where the party is:

D ∪DobsK |= Knows(B,¬∃l : Knows(A, loc = l), S0)

Alice could learn the location of the party by performing the read action, but
since Bob is in the room he would observe this action taking place. Since he has
not observed it, he can conclude that Alice does not know the location of the party.
Formally:

R(Knows(B,¬∃l : Knows(A, loc = l), S0)) ⇒

Knows0(B,R(P(¬∃l : Knows(A, loc = l), LbU(B))[S0])−1, S0)

P(¬∃l : Knows(A, loc = l), LbU(Bob)) ⇒

¬∃l : Knows(A, loc = l) ∧ (InRoom(B) ∨ ¬InRoom(A))

From the previous examples we know that:

R(¬∃l : Knows(A, loc = l, S0)) ⇒ ¬∃l : Knows0(A, loc = l, S0)

So the entire query regresses to:

Knows0(B,¬∃l : Knows0(A, loc = l) ∧ (InRoom(B) ∨ ¬InRoom(A)) , S0)

This is entailed by the domain.
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Example 4. After leaving the room, Bob won’t know that Alice doesn’t know the
location of the party:

D ∪DobsK |= ¬Knows(B,¬∃l : Knows(A, loc = l), do({leave(B)}, S0))

Once Bob leaves the room, he would be unable to observe Alice reading the
invitation. He must therefore consider it possible that she has read it, and may know
the location of the party. Formally, we can use Obs(B, {leave(B)}) = {leave(B)}
to regress the outer expression as follows:

R(¬Knows(B,φ, do({leave(B)}, S0))) ⇒

¬Knows(B, InRoom(B)→ R(P(φ,LbU(B)), {leave(B)}), S0)

For the inner expression, we have from the previous example:

P(¬∃l : Knows(A, loc = l), LbU(B)) ⇒

¬∃l : Knows(A, loc = l) ∧ (InRoom(B) ∨ ¬InRoom(A))

This expression is key: for Bob to know ¬∃l : Knows(A, loc = l), he must also
know either that he is in the room (and will thus observe the read(A) action if it
occurs) or that Alice is not in the room (so the read(A) action will not be possible).
Otherwise, Alice could learn the location of the party without him making any
further observations.

When we regress over the action {leave(B)} then InRoom(B) is made false:

R(P(¬∃l : Knows(A, loc = l), LbU(B)), {leave(B)}) ⇒

¬∃l : Knows(A, loc = l) ∧ (⊥ ∨ ¬InRoom(A))

And the entire expression can be simplified to:

¬Knows(B, InRoom(B)→ ¬∃l : Knows(A, loc = l) ∧ ¬InRoom(A), S0)

Since Alice is known to be in the room, this will be entailed by the domain.
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7.6 Future Applications

In this section we briefly consider how our work could integrate with some other
recent developments in the situation calculus literature. While this is far from a
detailed treatment, it does demonstrate the potential for interesting future work
utilising our formalism.

7.6.1 Approximate Epistemic Reasoning

From the examples in the previous section, it is clear that agents may need to per-
form significant amounts of reasoning to answer knowledge queries about arbitrary
formulae. This is on top of the already significant task of performing possible-worlds
reasoning in the initial situation [77]. An interesting approach to making reasoning
about knowledge more tractable is the formalism of Demolombe and Pozos Parra
[23], in which knowledge is limited to be about fluent literals only.

The basic idea is to introduce, for each fluent F in the domain, two additional
fluents K+

agtF and K−agtF to explicitly represent “agt knows F” and “agt knows
¬F” respectively. By formulating ordinary successor state axioms for these fluents,
literal-level knowledge can be reasoned about using standard regression and does
not require an explicit possible-worlds K-relation. However, this approach cannot
represent indeterminate disjunctive knowledge such as “agt knows F or G”.

The Demolombe and Pozos Parra approach has been formally related to the
standard Scherl and Levesque approach by Petrick and Levesque [76]. They show
there is an equivalence between the two approaches when an agent’s knowledge is
restricted to be disjunctive, so that the following holds:

Knows(agt, φ1 ∨ φ2, s)→ Knows(agt, φ1, s) ∨Knows(agt, φ2,s)

In [77] this equivalence is extended to cover existential quantification by restrict-
ing knowledge to also satisfy the following:

Knows(agt,∃x : φ(x), s)→ ∃x : Knows(agt, φ(x), s)

These disjunctive properties of knowledge are not entailed by a general possible-
worlds style theory in the tradition of [98], although there are restrictions that can
be placed on the theory in order to enforce them [77, 78].

While we do not consider maintenance of these disjunctive knowledge properties
in any detail, we do note that they also permit a sound approximation of knowl-
edge that can be reasoned about more tractably than the standard possible-worlds
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account. Following the style of [76] we could provide the following definitions:

KnowsA(agt, φ1 ∧ φ2, s)
def= KnowsA(agt, φ1, s) ∧KnowsA(agt, φ2, s)

KnowsA(agt,¬(φ1 ∧ φ2), s) def= KnowsA(agt,¬φ1, s) ∨KnowsA(agt,¬φ2, s)

KnowsA(agt,∀x : φ(x), s) def= ∀x : KnowsA(agt, φ(x), s)

KnowsA(agt,¬∀x : φ(x), s) def= ∃x : KnowsA(agt,¬φ(x), s)

KnowsA(agt,¬¬φ, s) def= KnowsA(agt, φ, s)

KnowsA(agt, F, s) def= Knows(agt, F, s)

KnowsA(agt,¬F, s) def= Knows(agt,¬F, s)

A knowledge query is split across the logical operators until we are left with
only knowledge of fluent literals, which is then handled using the formalism pre-
sented in this chapter. If we assume a finite number of fluents, then we can use our
regression rule for knowledge to pre-calculate an explicit successor state axiom for
KnowsA(agt, F, s) and KnowsA(agt,¬F, s), allowing them to be treated as primi-
tive fluents and reasoned about at run-time using purely syntactic transformations.

Unlike the approach of [23] in which the knowledge literal fluents must be ax-
iomatised separately from the actual fluents they describe, the approach suggested
here would allow a successor state axiom for literal-level knowledge to be derived
from the dynamics of the domain. All persistence condition calculations could be
performed once, offline, and then used directly for approximate reasoning about the
knowledge of an agent.

7.6.2 Knowledge under a Protocol

The knowledge formalism we have developed here is permissive, in that it assumes
the world could potentially evolve via any legal sequence of actions. In the wider
field of epistemic reasoning, it is common to constrain the world to evolve according
to a given protocol [25, 39, 118]. One then speaks of an agent’s knowledge under a
particular protocol.

As discussed in [118], permissive formulations of knowledge can easily be ex-
tended to support local protocols, where the allowable next actions can be deter-
mined based on the current state of the world. Our use of Legal in the axioms for
knowledge could easily be replaced with predicates axiomatising actions that are,
for example, Permissable or Motivated. But recent work by Fritz et al. [33] also
presents an intriguing possibility to extend our approach to more general protocols.

The most natural language for expressing a protocol in the situation calculus is

153



CHAPTER 7. KNOWLEDGE WITH HIDDEN ACTIONS

Golog, so one may wish to reason about an agent’s knowledge assuming the world
evolves as specified by the Golog program δ:

Kp(agt, δ, s′, s)
def= K(agt, s′, s) ∧ ∃s′′, δ′ : Init(s′′) ∧ Trans∗(δ, s′′, δ′, s′)

Such knowledge would be queried like so:

D ∪Dgolog ∪ DobsK |= Knowsp(agt, δ, φ, σ)

Indeed, it is this kind of knowledge that would be needed to integrate epistemic
reasoning into our MIndiGolog execution planner from Chapters 3 and 5, as the
agents in that case know that their teammates will act according to the shared
control program.

Fritz et al. [33] have demonstrated that the details of a given ConGolog program
δ can be compiled into a theory of action D, producing a new theory Dδ in which
the only legal situations are those that form part of a legal execution of δ:

D ∪Dgolog |= ∃δ′ : Trans∗(δ, S0, δ
′, σ)

iff

Dδ |= Legal(σ)

So to investigate the knowledge of an agent under a protocol, we could use
the compilation technique of [33] to get a query which can be handled using the
formalism developed in this chapter:

D ∪Dgolog ∪ DobsK |= Knowsp(agt, δ, φ, σ)

iff

Dδ ∪ DobsK |= Knows(agt, φ, σ)

The details are not quite so straightforward, as the compilation procedure in-
troduces some auxiliary actions and fluents that should be hidden from the agent’s
knowledge. However, it does offer an intriguing possibility for future work.

7.7 Discussion

In this chapter, we have used a principled axiomatisation of the observability of
actions to explicitly define an agent’s knowledge in terms of its local view. By
reifying observations and views as terms in the logic, we are able to give a succinct
definition of the dynamics of the knowledge fluent and prove that its behaviour
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matches our intuitive expectations. We have demonstrated that our account of
knowledge is expressive enough to capture the standard account of knowledge based
on public actions, as well as more complex formulations where the observability of
actions depends on the state of the world.

Moreover, it maintains its important theorems and the availability of a regression
rule as more complex kinds of information-producing action are introduced, such
as those discussed in Chapter 4. The importance of this guaranteed elaboration
tolerance should not be underestimated.

As an example of the problems that can arise when trying to characterise knowl-
edge using an implicit representation of an agent’s local perspective, consider again
one of the few existing formulations of knowledge in the situation calculus that al-
lows for hidden actions, that of [54]. Their successor state axiom for the K fluent is
repeated below:

K(agt, s′′, do(a, s)) ≡ ∃s′ : K(agt, s′, s)

∧ (actor(a) 6= agt → s′ ≤actor(a) 6=agt s′′))

∧ (actor(a) = agt → ∃s∗ :
[
s′ ≤actor(a) 6=agt s∗∧

s′′ = do(a, s∗) ∧ Poss(a, s∗) ∧ sr(a, s) = sr(a, s∗))
]

While the axiom seems intuitively plausible, it has a subtle problem: an agent’s
knowledge can change in response to actions performed by others. Suppose that agt
has just performed action a1, so the world is in situation do(a1, s). Another agent
then performs the action a2, leaving the world in situation do(a2, do(a1, s)). Since it
is not aware of the occurrence of a2, the knowledge of agt should be unchanged be-
tween these two situations. This is not the case under the formulation of [54], which
introduces arbitrarily-long sequences of hidden actions into the past of the possible
situation s′′. Based on our explicit formalisation of the agent’s local view, our ax-
iom includes hidden actions in the future of s′′ and avoids this unintuitive behaviour.

Our insistence on allowing for “all possible future actions” may seem like it
would leave the agents with too little knowledge. Indeed, it is easy to construct
cases in which agents can never know the value of certain fluents. We argue that
this restriction is necessary in asynchronous domains: if Definition 9 is accepted as
the definition of a view, and equation (7.4) is accepted as the definition for how
knowledge should behave, then the agent is required to consider any arbitrarily-long
sequence of legal hidden actions.

Note, however, that the sequences of actions considered must not only be legal,
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but unobservable as well. As shown in our example domain, if the agents have
good observability of parts of the domain, they can acquire significant amounts of
knowledge because there will be few hidden actions.

One approach to further taming these hidden future situations is to assume that
agents always know the current time, or some bound on the current time. They can
use this information in conjunction with their local view to determine what they
know, given that the current time is τ :

D ∪DobsK |= Knows(agt, (start < τ)→ φ, v)

Since this query is uniform, it can be approached directly using our regression
rules. If all actions take some finite duration, τ will effectively bound the length of
hidden action sequences that need to be considered. Not only will this permit the
agents to gain knowledge of more fluents, but it will also guarantee the termina-
tion of the persistence condition calculation. In essence, this approach adds some
synchronicity back into the domain in order to allow more effective reasoning.

Another option would be to abandon the requirement that the agents know
particular fluents and formulate a logic of belief. Belief-based formalisms have been
constructed for the situation calculus using a possible-worlds approach similar to
that used for knowledge [109]. In such formalisms agents are allowed to be mistaken,
and so do not need to guarantee their knowledge is correct by considering all possible
ways that the world might evolve. One example of an alternative is the work of
Shapiro and Pagnucco [105], who have shown how an agent can hypothesise the
occurrence of hidden actions when it discovers that its beliefs are mistaken.

We do not consider belief-based systems in this thesis, but note that the use of
a similar possible-worlds semantics means that our explicit notions of observations
and views could also provide benefits for such formalisms, as well as for the formu-
lation of other modalities (e.g goals as in [107]) in the situation calculus.

We have thus provided the first foundational account of epistemic reasoning
in the situation calculus in asynchronous multi-agent domains, including a precise
characterisation of the inductive reasoning required to handle knowledge using a
regression rule in such domains. The effectiveness of automated reasoning in our
formalism is highly dependent on the effectiveness of persistence condition calcula-
tion. Since this is a fixpoint calculation, it can be computationally expensive and
even undecidable in complex domains. But by factoring out the necessary inductive
reasoning into a separate operator, it can now be studied and improved in isolation.

Finally, and perhaps most importantly, we have shown that a simple modification
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to our regression rules allows a situated agent to reason directly about its own
knowledge using only its local view, rather than constructing a query that universally
quantifies over all situations compatible with its view. Our new observation-based
semantics thus provides a powerful account of knowledge suitable both for reasoning
about, and for reasoning in, asynchronous multi-agent domains.
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Chapter 8
Complex Epistemic Modalities

This chapter develops an explicit formal treatment of group-level epistemic modal-
ities in the situation calculus. The primary motivation for this work is a formal
treatment of common knowledge that permits effective reasoning with a regression
rule, but as we shall see, this requires significant technical machinery capable of
handling much more general epistemic modalities.

Attempts to reason about common knowledge are bound by a fundamental ex-
pressivity limitation: the regression of common knowledge cannot be expressed in
terms of common knowledge alone [8]. To overcome this limitation we take our
cue from recent promising work in dynamic epistemic logic, with the main idea due
to van Benthem et al. [119]: increase the expressiveness of the epistemic language
so it is strong enough to formulate a proper regression rule. They have developed
the Logic of Communication and Change (henceforth “LCC”) using propositional
dynamic logic to express epistemic modalities, and have shown that it allows rea-
soning about common knowledge using techniques akin to regression. We follow a
similar approach in this chapter and introduce complex epistemic modalities to the
situation calculus.

While this chapter naturally parallels the development of LCC, there are also
substantial differences. LCC is built on modal logic and so handles only proposi-
tional, synchronous domains. The richer ontology of the situation calculus means
our formalism must support first-order preconditions and effects, quantifying-in and
de-dicto/de-re, and arbitrary sets of concurrent actions. It must also incorporate
our new technique for handling hidden actions while remaining compatible with
other extensions to the situation calculus. By building on our rigorous observation-
based semantics for individual knowledge, and using a macro-expansion approach
to construct group-level modalities, our formalism is able to neatly fulfill all these
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requirements.

The language of first-order dynamic logic is adopted to construct complex epis-
temic paths, with the macro PKnows(π, φ, s) expressing knowledge using such a
path. Since common knowledge is defined as the transitive closure of the union of the
agents’ base knowledge operators, it can be expressed as PKnows((A ∪ B)∗, φ, s).
Regression is then modified to treat PKnows(π, φ, do(c, s)) as a primitive fluent,
producing an equivalent formula PKnows(T (π),R(φ), s). Here T is a new meta-
level operator called the epistemic path regressor.

After some more detailed background material in Section 8.1, the chapter pro-
ceeds as follows. Section 8.2 defines a variant of first-order dynamic logic for use
as an epistemic path language, which is encoded in the situation calculus using
the macro KDo0(π, s, s′). This macro is analogous to the fluent K(agt, s′, s) from
Chapter 7 but expresses more complex epistemic relationships between situations.

Section 8.3 develops a synchronous account of complex epistemic modalities.
The macro PKnows0(π, φ, s) expresses knowledge using an epistemic path π under
the assumption that there have been no hidden actions. We develop a regression rule
for the synchronous case by encoding the effects of an action inside the epistemic
path as well as the enclosed formula, transforming PKnows0(π, φ, do(c, s)) into an
equivalent expression ∀c′ : PKnows0(T (π, c, c′),R(φ, c′), s).

Section 8.4 introduces hidden actions by using the empty action set to explicitly
represent a hidden action. We simulate agents reasoning about arbitrarily-long
sequences of hidden actions by inserting arbitrarily many empty action sets between
each real action in a situation term. A regression rule is formulated for this infinitary
construction using the persistence condition meta-operator in a similar way to the
previous chapter. Section 8.5 then demonstrates the correctness of this construction
by showing that in the case of a single agent, it precisely matches the definition of
individual knowledge presented in Chapter 7.

The effectiveness of our new technique is demonstrated in Section 8.6 by reason-
ing about common knowledge in an asynchronous, partially observable domain, a
first for the situation calculus. Section 8.7 compares the resulting formalism with
LCC, highlighting both similarities and differences, while Section 8.8 discusses the
implications of our more powerful epistemic language for answering the regressed
knowledge query. Finally, Section 8.9 concludes with some general discussion.

The end result is a powerful account of complex group-level epistemic modalities
constructed almost entirely in the meta-level reasoning machinery of the situation
calculus, and a regression-based effective reasoning procedure capable of reasoning
about common knowledge in asynchronous domains.
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8.1 Background

Let us begin by recalling the definitions of group-level modalities from Section 2.3:

EKnows(G,φ, s) def=
∧

agt∈G
Knows(agt, φ, s)

EKnows1(G,φ, s) def= EKnows(G,φ, s)

EKnowsn(G,φ, s) def= EKnows(G,EKnowsn−1(G,φ), s)

CKnows(G,φ, s) def=
∧
n∈N

EKnowsn(G,φ, s)

Finite group-level knowledge operators such as EKnows can be reasoned about
using existing techniques by simply expanding out the definitions into individual-
level knowledge operators, and applying the regression rules developed in the pre-
vious chapter. But since the definition of common knowledge is second-order or
infinitary, it cannot be handled in this way.

Existing treatments of common knowledge in the situation calculus and related
literature specify it as the transitive closure of EKnows using an explicit second-
order axiom [16, 35]. While logically sound, this approach forgoes the use of re-
gression as an effective reasoning technique. Indeed, reasoning in such formalisms
requires a second-order theorem prover.

This difficulty in effectively handling common knowledge can be attributed to
a famous expressivity result from Batlag et al. [8] in the related field of dynamic
epistemic logic:

Epistemic logic with actions and common knowledge is more expressive
than epistemic logic with common knowledge alone

In our terminology: given a formula CKnows(G,φ, do(c, s)), it is impossible in gen-
eral to find an equivalent formula CKnows(G,ψ, s). We therefore cannot formulate
a regression rule for common knowledge in terms of Knows and CKnows.

Given the deep similarities between the situation calculus and dynamic epistemic
logic [117], we can be confident that this expressivity limitation also holds in the
situation calculus. Rather than attempting to formally establish it, we present a
short summary of the intuitions behind the result and why it should be expected to
hold, then proceed directly with a technique to circumvent it.

Consider again the standard successor state axiom for the K fluent, which has
the simplified general form:

K(do(c′, s′), do(c, s)) ≡ K(s′, s) ∧ ΦK(c′, s′)
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We could construct an analogous fluent E that captures the EKnows relation,
with a successor state axiom of the general form:

E(do(c′, s′), do(c, s)) ≡ E(s′, s) ∧ ΦE(c′, s′)

Now consider constructing such a fluent for the EKnows2 relation. The general
form for its successor state axiom must hypothesise an intermediate situation:

E2(do(c′, s′), do(c, s)) ≡ ∃c′′, s′′ : E(do(c′′, s′′), do(c, s)) ∧ E(do(c′, s′), do(c′′, s′′))

⇒ ∃c′′, s′′ : E(s′′, s) ∧ E(s′, s′′) ∧ ΦE(c′, s′) ∧ ΦE(c′′, s′′)

⇒ ∃c′′, s′′ : E2(s′, s) ∧ ΦE(c′, s′) ∧ ΦE(c′′, s′′)

This axiom must perform tests not only at s and s′, but also at the hypothesised
intermediate situation s′′. Extending this reasoning, a successor state axiom for
common knowledge would be required make assertions not only about s and s′,
but all of the intermediate situations in the transitive closure. However, the macro
CKnows can only make assertions about the final situation reached in the transitive
closure, not about the situations on the path leading to it. It is thus not expressive
enough to formulate a proper regression rule.

To overcome this expressiveness limitation, we follow the recent promising work
of van Benthem et al. [119], who use two important new ideas to produce a regression
rule for common knowledge in their logic LCC:

• Form more expressive epistemic modalities using the syntax of dynamic logic,
interpreted over the epistemic frame of the agents.

• Apply regression within the modality as well as to the enclosed formula.

While the full details of LCC would take us too far afield in this thesis, let us
demonstrate the basic idea. LCC uses explicit update models to model partially-
observable actions. These are finite Kripke structures in which each world represents
a possible action that was performed. To represent that φ holds after performing
event e from update frame U , LCC uses the standard box modality of dynamic logic:

[U, e]φ

To express the agent’s knowledge, the language of Propositional Dynamic Logic
(henceforth “PDL”) is adopted with standard semantics [40], but interpreted over
the epistemic frame of the agents instead of over actions. Individual-level knowledge
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is expressed as in standard modal logic:

[Bob]φ

But these base knowledge operators can be combined using the dynamic logic
operators choice (∪), sequence (;), test (?φ) and iteration (∗). Common knowledge
between Alice and Bob is expressed in LCC as:

[(Alice ∪Bob)∗]φ

This modality is the transitive closure of the union of the agents’ individual
knowledge operators, which is one of the common semantic definitions of common
knowledge. To perform reasoning, “reduction rules” are used that are similar in spirit
to the regression operator of the situation calculus. Let π be an arbitrary epistemic
modality and U an update model with n possible actions, then the reduction rule
for knowledge in LCC is:

[U, ei][π]φ ⇒
n−1∧
j=0

[TUij (π)][U, ej ]φ

This definition enumerates all n possible actions that could be mistaken for the
real action ei according to update model U , then uses a special program transformer
TUij to encode the information from U into the epistemic modality π. We shall discuss
some of the details of TUij later in this chapter.

Our work applies these ideas to perform group-level epistemic reasoning in the
situation calculus, allowing common knowledge to be handled using regression.
While the development naturally parallels that of LCC, the much richer ontology of
the situation calculus means there are also substantial differences. In particular:

• LCC is propositional : actions do not take arguments, there are finitely many
actions, and no quantification is required.

• LCC is synchronous: reasoning is performed by regressing one action at a time,
without the “all possible futures” approach needed to handle hidden actions.

By contrast, our formalism must capture first-order preconditions and effects, quant-
ifying-into and de-dicto/de-re, and arbitrary sets of concurrent actions, while ac-
counting for arbitrarily-long sequences of hidden actions and remaining compatible
with other extensions to the situation calculus.

As we shall see throughout the development, the extra expressiveness of the
situation calculus also provides some advantages for our formalism. We do not need
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to manipulate explicit update models, since we have reified action terms and a full
axiomatisation of each agent’s epistemic uncertainty. The definition of our regression
rules will also turn out to be much simpler than the analogous rules in [119].

8.2 Epistemic Paths

We will be approaching our formalism in two steps: first defining complex epistemic
modalities in synchronous domains, and then building support for hidden actions on
top of that foundation. So to begin, we must define the synchronous knowledge of
an individual agent in an arbitrary situation s. This is the agent’s knowledge when
it assumes that no hidden actions have occurred, and so it is not required to do any
“all possible futures” style reasoning. We extend the fluent K0(agt, s′, s) which is
already used to represent synchronous knowledge in the initial situation. The axiom
set DobsK gains the following successor state axiom for K0:

K0(agt, s′′, do(c, s)) ≡ ∃s′, c′ : K0(agt, s′, s) ∧Obs(agt, c, s) = Obs(agt, c′, s′)

∧
(
s′′ = do(c′, s′) ∧ Legal(c′, s′) ∨ s′′ = s′ ∧ c′ = {}

)
(8.1)

Given synchronicity, this axiom is a simple modification of the standard successor
state axiom for knowledge from equation (7.2). The only complication is that when
Obs(agt, c, s) = {}, the agent considers it possible that no actions were actually
performed, so s′ = s′′ and c′ = {}. Thus the number of actions in s puts an upper
bound on the number of actions that the agent thinks might actually have occurred.

While we hope this definition is intuitively plausible, we will not formally relate it
to the definitions given in the previous chapter until Section 8.5. Beginning with the
assumption of synchronicity allows us to focus first on increasing the expressiveness
of the epistemic language. Once this has been achieved, we will generalise the
formalism to asynchronous domains.

The next step is to adopt the language of dynamic logic to express complex
epistemic modalities rather than modalities regarding action. To deal gracefully
with the many first-order aspects of the situation calculus we use a variant of first-
order dynamic logic (henceforth “FODL”), which we adapt with some simplifications
from the dynamic term-modal logic of Kooi [49].

First, we must specify the syntax of our epistemic path language. We will use π
to denote an arbitrary epistemic path expression.
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Definition 24 (Epistemic Path). Let agt be an Agent term, φ a uniform formula
and x a variable name, then the epistemic path terms π are the smallest set matching
the following structural rules:

π ::= agt | ?φ |π1;π2 |π1 ∪ π2 |π∗ | ∃x

The test (?), sequence (;), choice (∪) and transitive closure (∗) operators are
standard in dynamic logic, although test formulae may now contain variables that
must be interpreted. The operator ∃x allows the value of a variable to change during
path traversal, by non-deterministically re-binding x to some value. The variables
used in paths must be distinct from all symbols in Lsitcalc.

The semantics of this epistemic path language are defined at the meta-level as
a series of macro expansions. Formulae of first-order dynamic logic are interpreted
relative to both a “current world” and a “current variable binding” [49]. We will
represent the variable binding as a first-order substitution µ; the notation µ(φ)
applies the substitution to the variables in φ and µ[x/z] sets the value of variable
x to the term z. However, we do not want to introduce new terms or axioms to
Lsitcalc in order to model these substitutions as concrete objects. Since any path π

will have a finite number of variables, the substitutions used in its macro-expansion
can be directly replaced with finite tuples of variables from Lsitcalc. We will continue
to use the notation µ in line with the standard semantics of FODL, which operate
over pairs (µ, s).

Definition 25 (Epistemic Path Semantics). A situation s′ is reachable from sit-
uation s via epistemic path π, denoted KDo0(π, s, s′), according to the following
definitions:

KDo0(π, s, s′) def= ∃µ, µ′ : KDo0(π, µ, s, µ′, s′)

KDo0(agt, µ, s, µ′, s′) def= µ′ = µ ∧ K0(agt, s′, s)

KDo0(?φ, µ, s, µ′, s′) def= s′ = s ∧ µ′ = µ ∧ µ(φ)[s]

KDo0(π1;π2, µ, s, µ
′, s′) def=

∃µ′′, s′′ : KDo0(π1, µ, s, µ
′′, s′′)

∧KDo0(π2, µ
′′, s′′, µ′, s′)

KDo0(π1 ∪ π2, µ, s, µ
′, s′) def= KDo0(π1, µ, s, µ

′, s′) ∨ KDo0(π2, µ, s, µ
′, s′)

KDo0(∃x, µ, s, µ′, s′) def= ∃z : s′ = s ∧ µ′ = µ[x/z]

∀P : [refl ∧ tran ∧ cont]→
[
P (µ, s, µ′, s′)→ KDo0(π∗, µ, s, µ′, s′)

]
Where we use the following abbreviations (standing for “reflexive”, “transitive”
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and “contains” respectively) to specify π∗ as the reflexive transitive closure of π:

refl def= P (µ, s, µ, s)

tran def= ∀µ1, s1, µ2, s2 : P (µ1, s1, µ, s) ∧KDo0(π, µ2, s2, µ1, s1) → P (µ2, s2, µ, s)

cont def= ∀µ′, s′ : KDo0(π, µ′, s′, µ, s) → P (µ′, s′, µ, s)

Let us re-iterate: paths are not terms in Lsitcalc, but rather are handled by macro-
expansion of KDo0(π, s, s′) into second-order sentences of the situation calculus. In
particular, this means that the variables used in epistemic paths are not actual terms
and cannot appear outside of a KDo0 macro.

For notational convenience, we also introduce an explicit assignment operator:

KDo0(x⇐ τ, µ, s, µ′, s′) def= KDo0(∃x ; ?x = τ, µ, s, µ′, s′)

This operator non-deterministically rebinds x to any value, then immediately
asserts that it is equal to the specific value τ . Since this expands to a test formula,
τ can potentially be a functional fluent that is interpreted at the current situation.
It cannot, however, depend on the current value of x.

8.3 A Synchronous Epistemic Fluent

At this point it’s worth reviewing again the purpose of this path language. Despite
utilising the syntax of dynamic logic, it is not related to actions in any way. Rather
it expresses complex epistemic paths, and is interpreted over the epistemic frame
generated by the agents’ knowledge relations. We will be introducing a new macro
PKnows(π, φ, s) (read this as “Path-Knows”) to express knowledge using these
epistemic paths. To make this clear, here is how some different kinds of knowledge
would be expressed using the standard account of knowledge, and how we intend to
express them using epistemic paths:

Knows(A, φ, s) ≡ PKnows(A, φ, s)

Knows(A,Knows(B,φ), s) ≡ PKnows(A;B,φ, s)

Knows(A, φ, s) ∧Knows(B,φ, s) ≡ PKnows(A ∪B,φ, s)

EKnows(G,φ, s) ≡ PKnows(
⋃
a∈G

a, φ, s)

CKnows(G,φ, s) ≡ PKnows((
⋃
a∈G

a)∗, φ, s) (8.2)

In this section, we develop a synchronous version PKnows0(π, φ, s) of our path-
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knowledge operator, since the semantics of KDo0 reference the synchronous knowl-
edge fluent K0 defined earlier. The definition of PKnows0 is a straightforward
analogue of the individual-level Knows macro:

PKnows0(π, φ, s) def= ∀s′ : KDo0(π, s, s′) → φ[s′]

By virtue of KDo0 this macro expands to a complicated second-order formula
in the base language of the situation calculus. As with the case of the basic Knows

macro, we need to treat PKnows0 syntactically as a primitive fluent. This means
we need a regression rule for such expressions. It is here that we incorporate the
second key idea from LCC – use of a syntactic transform to encode the effects of
actions within epistemic paths as well as in primitive formulae. Mirroring LCC,
we introduce the meta-operator TD for this purpose. As with regression and the
persistence condition, we assume a fixed action theory and write T rather than TD.

Let us consider the required operation of T by analogy with the standard regres-
sion operator R. One can think of regression as a “pre-encoding” of the effects of an
action: φ will hold in do(c, s) if and only if R(φ, c) holds in s. The path regressor T
needs to lift this idea to epistemic paths as follows: there is a π-path from do(c, s)
to do(c′, s′) if and only if there is a T (π, c, c′)-path from s to s′.

In order to accomplish this task of pre-encoding the effects of actions, the path
regressor will need to make various assertions about the action that is to be per-
formed in each situation traversed by the regressed path. It uses a fresh variable to
keep track of this “current action”. The basic operation of T is as follows:

• Introduce a fresh variable x to hold the action that was performed in the
current situation;

• at the beginning of the path, bind x to the known action c;

• at the end of the path, assert that x is the known action c′; and

• when the path moves to a new situation, select a new action using ∃x.

This is accomplished with an auxiliary operator Ta(π, x), which translates π under
the assumption that x contains the action to be performed in the current situation.

Definition 26 (Epistemic Path Regressor). The epistemic path regressor T (π, c, c′)
operates according to the definitions below, where x and z are fresh path variables
not appearing in π:

T (π, c, c′) def= x⇐ c ; Ta(π, x) ; ?x = c′
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Ta(agt, x) def= z ⇐ Obs(agt, x) ; agt ; ∃x ; ?Legal(x) ∨ x = {} ; ?Obs(agt, x) = z

Ta(?φ, x) def= ?R(φ, x)

Ta(∃y, x) def= ∃y

Ta(π1;π2, x) def= Ta(π1, x) ; Ta(π2, x)

Ta(π1 ∪ π2, x) def= Ta(π1, x) ∪ Ta(π2, x)

Ta(π∗, x) def= Ta(π, x)∗

Most of these rules are straightforward, but note how the clause for an individual
agent term encodes the successor-state axiom for K0 from equation (8.1). In order to
capture the requirement that Obs(agt, c, s) = Obs(agt, c′, s′) it uses a new variable z
which is bound to the agent’s observations in the current situation. It then moves to
a new situation by making an agt path step, and selects a new value for the current
action x; this corresponds to the ∃c′, s′ in equation (8.1). Finally, it asserts that the
observations in the new situation match those recorded in z.

Also note that c and c′ are proper situation calculus variables, not path variables,
and are being introduced into the path from outside the scope of the KDo0 and
PKnows0 macros. The path regressor in essence encodes the conditions under
which an occurrence of action c could be mistaken for an occurrence of c′.

The following theorem states that these definitions behave has desired, respecting
the semantics of epistemic paths:

Theorem 14. For any epistemic path π:

D ∪DobsK |= KDo0(π, do(c, s), s′′) ≡

∃c′, s′ :
(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ c′ = {} ∧ s′′ = s′

)
∧KDo0(T (π, c, c′), s, s′)

Proof Sketch. The proof proceeds by cases, covering each path operator in turn. The
base cases agt, ?φ and ∃y follow from Definition 25 and the successor state axiom
for K0 in equation (8.1). The inductive cases are straightforward as Ta is simply
pushed inside each operator. For a detailed proof see Appendix A.

Note that the situations reachable by KDo0(π, do(c, s), s′′) are not necessarily
successors of the situations reachable by KDo0(T (π, c, c′), s, s′) – if one of the agents
mentioned in π does not make any observations, c′ is permitted to be empty and
the situation s′ itself is still reachable from do(c, s). This mirrors the handling of
empty observations by the successor state axiom for K0 and will be critical when
we extend the formalism to asynchronous domains.
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Given that T correctly regresses our epistemic path language, we are free to use
it to define the regression of a complex epistemic modality. We define the regression
of a PKnows0 expression as follows:

R(PKnows0(π, φ, do(c, s))) def= ∀c′ : PKnows0(T (π, c, c′),R(φ, c′), s)

Note that this rule must universally quantify over action terms c′ in order to
account for different actions producing the same observations. Such quantification
is also found in the rule for individual knowledge from equation (7.10), although
here it has been taken outside the scope of the knowledge macro.

Theorem 15. For any epistemic path π, uniform formula φ and action c:

D ∪DobsK |= PKnows0(π, φ, do(c, s)) ≡ ∀c′ : PKnows0(T (π, c, c′),R(φ, c′), s)

Proof Sketch. The mechanics of this proof mirror that of Theorem 11: we expand
the PKnows0 macro, apply Theorem 14 as a successor state axiom for KDo0, re-
arrange to eliminate existential quantifiers, then collect terms back into forms that
match PKnows0. For a detailed proof see Appendix A.

8.4 Introducing Hidden Actions

We now have a powerful account of group-level knowledge for synchronous domains,
but it remains to generalise this to asynchronous domains by incorporating support
for arbitrarily-long sequences of hidden actions. We continue to operate at the
meta-level, developing support for hidden actions directly in the rules governing the
regression operator.

The idea is to use the empty action set to explicitly represent the occurrence
of a single hidden action. We simulate agents reasoning about hypothetical futures
in which they make no more observations by inserting these empty actions between
each regular action in a situation term.

Definition 27. Let En(s) be s with n empty actions inserted between each action:

E0(s) def= s

E1(S0) def= do({}, S0)

E1(do(c, s)) def= do({}, do(c, E1(s)))

En(s) def= E1(En−1(s))
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The intuition here is that we want PKnows(π, φ) to hold if PKnows0(π, φ)
holds after allowing for any number of empty actions. Formally, we will define
PKnows(π, φ, s) to be the following infinite conjunction:

PKnows(π, φ, s) def=
∧
n∈N

PKnows0(π, φ, En(s))

To avoid an infinite set of sentences we could also use an equivalent second-order
definition. The choice is immaterial, since we do not intend to actually expand this
definition during reasoning. As before, we will formulate a regression rule allowing
it to be treated as a primitive fluent. First, let us demonstrate that this definition
is intuitively plausible with the following theorem:

Theorem 16. For any epistemic path π:

D ∪DobsK |= PKnows0(π, φ, E1(s))→ PKnows0(π, φ, s)

Proof Sketch. By a case analysis on the definition of T , we determine that that
path T (π, {}, {}) always contains the path π. Thus any situations reachable by
π are also reachable by T (π, {}, {}). Since T (π, {}, {}) is always in the regres-
sion of PKnows0(π, φ, E1(s)) and R(φ, {}) = φ always, we can conclude that
PKnows0(π, φ, E1(s)) always implies PKnows0(T (π, {}, {}), φ, s), which implies
PKnows0(π, φ, s) as required. For a detailed proof see Appendix A.

The addition of empty actions into a PKnows0 expression is thus monotone.
It cannot cause the agents to know things that were not already known, but may
cause them to lose knowledge of fluents that can be falsified by a sequence of hidden
actions. By arguments entirely analogous to those used in Chapter 6, the addition
of empty actions must eventually reach a well-defined fixpoint, and it may be helpful
to think of PKnows as a fixpoint definition with the following suggestive notation:

PKnows(π, φ, s) def= PKnows0(π, φ, E∞(s))

It is this fixpoint nature that will allow us to construct a regression rule using the
persistence condition operator. First, let us define an auxiliary meta-level operator
Z that replaces instances of PKnows0 with PKnows:
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Z(φ1 ∧ φ2) def= Z(φ1) ∧ Z(φ2)

Z(∃x : φ(x)) def= ∃x : Z(φ(x))

Z(¬φ) def= ¬Z(φ)

Z(PKnows0(π, φ, σ)) def= Z(PKnows(π, φ, σ))

Z(φ) def= φ , otherwise

Next, we have a simple action description predicate that is only ever satisfied by
the empty action set:

Empty(a, s) ≡ a = {}

We then propose the following regression rules for the macro PKnows:

R(PKnows(π, φ, do(c, s))) def= Z(R(P(PKnows0(π, φ), Empty), c)[s]) (8.3)

R(PKnows(π, φ, S0)) def= P(PKnows0(π, φ), Empty)[S0] (8.4)

Here we are using P with a very restrictive action description predicate to account
for an arbitrary number of empty actions. By using Z to switch from PKnows0

back to PKnows once P and R have been applied, we effectively insert an arbitrary
number of empty actions between each real action c in the situation term.

Note that, as in the case of individual-level knowledge, regressing PKnows at
do(c, s) produces an expression using PKnows at s, while regressing PKnows at
S0 produces an expression involving PKnows0 at S0. Repeated applications of
these rules will thus reduce a path-knowledge query at some future situation to a
synchronous path-knowledge query in the initial situation.

Theorem 17. Given a basic action theory D and a uniform formula φ:

D ∪DobsK |= PKnows(π, φ, s) ≡ R(PKnows(π, φ, s))

Proof Sketch. Proceed by induction on situation terms. For the base case we demon-
strate that P(PKnows0(π, φ), Empty)[S0] is equivalent to the infinite conjunction∧
n∈N PKnows0(π, φ, En(S0)), from which the validity of (8.4) is immediate. To

validate (8.3) in the inductive case of En(do(c, s)), we demonstrate that the use of
P accounts for the hidden actions inserted after c, the use of R accounts for c itself,
and the use of Z lets the inductive hypothesis account for the hidden actions before
c. For a detailed proof see Appendix A.
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These rules for PKnows operate in a very similar way to the regression rule for
Knows from equation (7.10), using a fixpoint calculation to account for arbitrarily
long sequences of hidden actions. In the following section we formalise the precise
relationship between Knows and PKnows.

We also note that, as in the previous chapter, our regression rules for knowl-
edge are no longer simple syntactic manipulations but require a meta-level fixpoint
calculation to deal with hidden actions. In synchronous domains this fixpoint is
unnecessary and PKnows is equivalent to PKnows0, which can be regressed using
purely syntactic manipulation. We thus provide an effective reasoning procedure for
common knowledge in synchronous domains that is comparable with techniques for
handling individual-level knowledge, while also extending the reach of our formalism
into richer domains where some inductive reasoning is required.

Theorem 18. Let Dsync be a synchronous basic action theory, then:

Dsync ∪ DobsK |= ∀s : PKnows(π, φ, s) ≡ PKnows0(π, φ, s)

Proof Sketch. It suffices to show that:

Dsync ∪ DobsK |= PKnows0(π, φ, s) → PKnows0(π, φ, E1(s))

Then by Theorem 16 we have that PKnows0(π, φ, s) is enough to establish
PKnows0(π, φ, En(s)) for any n, which establishes the infinite conjunction in the
definition of PKnows(π, φ, s) as required. The regression of PKnows0(π, φ, E1(s))
contains the modality T (π, {}, c′) , and we demonstrate that since the domain is
synchronous it is not possible for the regressed path to exit successfully unless c′ =
{}. Showing that T (π, {}, {}) is equivalent to π in synchronous domains completes
the proof. For a detailed proof see Appendix A.

8.5 The Link with Individual Knowledge

The last remaining link is the most important of all: showing that this new path-
based account of knowledge actually captures the knowledge of the agents, according
to the semantics of individual knowledge developed in Chapter 7. The following
series of theorems establish this important link.

Lemma 4. For any agt and φ:

D ∪DobsK |= PKnows(agt, φ, S0) ≡ PKnows0(agt,P(φ,LbU(agt)), S0)
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Proof Sketch. Begin by applying equation (8.4) to the LHS to get an expression in
PKnows0. By stepping through the regression of PKnows0(agt, φ, do({}, S0)) we
show that for any value of n, Pn(PKnows0(agt, φ, ), Hidden)[S0] is equivalent to
PKnows0(agt,Pn(φ,LbU(agt)), S0). The fixpoint calculation for P thus terminates
at the same value of n in both cases, giving the required equivalence. For a detailed
proof see Appendix A.

Lemma 5. For any agt, φ, c and s:

PKnows(agt, φ, do(c, s)) ≡ ∃z : Obs(agt, c, s) = z

∧ [z = {} → PKnows(agt,P(φ,LbU(agt)), s)][
z 6= {} → PKnows(agt,∀c′ :

(
Legal(c′) ∧Obs(agt, c′) = z

)
→ R(P(φ,LbU(agt)), c), s)]

Proof Sketch. We apply equation (8.4) to get an expression in PKnows0. Repeating
the calculations from Lemma 4 gives us the required P expression, and regressing
this over c gives us the required R expression. Using Z then allows us to transform
from PKnows0 back to PKnows to obtain the desired result. For a detailed proof
see Appendix A.

Lemma 6. For any agt, φ and s:

D ∪DobsK |= Knows(agt, φ, s) ≡ Knows(agt,P(φ,LbU(agt)), s)

Proof Sketch. By induction on situations and using the regression rules for knowl-
edge, along with the following property of the persistence condition (“if φ persists,
then P(φ, α) persists”):

∀s′ : P(φ, α)[s] ∧ s ≤α s′ → P(φ, α)[s′]

We consider three cases: s = S0, and s = do(c, s) with c both observable and
unobservable. Each case requires only a simple re-arrangement of the relevant re-
gression rule. For a detailed proof see Appendix A.

Theorem 19. For any agt, φ and s:

D ∪DobsK |= Knows(agt, φ, s) ≡ PKnows(agt, φ, s)

Proof. By induction on situation terms, using the regression rules for each expres-
sion. For the S0 case, we require the following result which is true by the definition
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of KDo0:
Knows0(agt, φ, S0) ≡ PKnows0(agt, φ, S0)

The regression rule for Knows from equation (7.11) then precisely matches the
result of Lemma 4 and we have the required equivalence. For the do(c, s) case,
we can substitute the result of Lemma 6 into the regression rule for Knows from
equation (7.10) to produce an expression precisely matching the result of Lemma 5.
Using Knows(agt, φ, s) ≡ PKnows(agt, φ, s) from the inductive hypothesis renders
the two equivalent.

Thus the expressions Knows(agt, φ, s) and PKnows(agt, φ, s) are equivalent
under our formulation. This link is all that is required to validate the additional
complex modalities shown in equation (8.2), repeated below for convenience.

Theorem 20. The following identities hold under the theory of action D ∪DobsK :

Knows(A, φ, s) ≡ PKnows(A, φ, s)

Knows(A,Knows(B,φ), s) ≡ PKnows(A;B,φ, s)

Knows(A, φ, s) ∧Knows(B,φ, s) ≡ PKnows(A ∪B,φ, s)

EKnows(G,φ, s) ≡ PKnows(
⋃
a∈G

a, φ, s)

CKnows(G,φ, s) ≡ PKnows((
⋃
a∈G

a)∗, φ, s)

Proof. Each follows from equivalence of Knows(agt, φ, s) and PKnows(agt, φ, s),
using the semantics of first-order dynamic logic as defined by KDo0. For example,
in the CKnows case we argue as follows: By definition, PKnows((

⋃
a∈G a)∗, φ, s) is

the transitive closure of the union of PKnows(a, φ, s) for a ∈ G. Also by definition,
CKnows(G,φ, s) is the transitive closure of the union of Knows(a, φ, s) for a ∈ G.
Since PKnows(a, φ, s) and Knows(a, φ, s) are the same relation, their transitive
closures are also the same and the identity is entailed.

Let us briefly return to the initial premise of this chapter: that the regression
of common knowledge cannot be expressed in terms of common knowledge alone.
Since Theorems 15 and 17 and equivalences, we have shown that the operation of T
captures precisely the information needed to regress common knowledge. The path
resulting from T ((A ∪ B)∗, c, c′) will contain various test conditions and variable
re-bindings inside the scope of the iteration. Such a path is clearly beyond the
expressive power of the ordinary common knowledge operator, providing a satisfying
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confirmation of our intuitions that the results of Batlag et al. [8] would apply to the
situation calculus.

8.6 An Illustrative Example

With this technical machinery in place, we are now able to reason about the group-
level epistemic modalities of a team of agents. To demonstrate we revisit our example
domain from the previous chapter, in which Alice and Bob have received an invita-
tion to a party. To keep the presentation simple we will assume that actions cannot
be performed concurrently. We add the the following initial knowledge axiom to
DS0 :

PKnows0((A ∪B)∗, InRoom(A) ∧ InRoom(B), S0)

The preconditions and effects of actions in this domain are relatively simple, such
that there is nothing that can be accomplished by a sequence of hidden actions that
cannot be accomplished by a single hidden action. More formally, it is possible to
show that in this domain: ∧

n∈N
φ[En(s)] ≡ φ[E1(s)]

In other words, the fixpoint calculation required for reasoning about PKnows will
always terminate after a single iteration. We will therefore use the following identity
to simplify presentation of the example:

R(PKnows(π, φ, do(c, s)) =Z(R(P(PKnows0(π, φ), Hidden)[do(c, s)]))

≡ Z(R(R(PKnows0(π, φ, E1(do(c, s))))))

≡ ∀c′, c′′ : PKnows(T (T (π, {}, c′), c, c′′),R(R(φ, c′), c′′), s)

To keep the presentation compact, we abbreviate the fluent InRoom to IR.

Example 5. After Bob reads the invitation, it is common knowledge that he knows
where the party is:

D ∪DobsK |= PKnows((A ∪B)∗, ∃x : Knows(B, loc = x), do(read(B), S0))

This example hinges on the fact that initially, it is common knowledge that
both agents are in the room. It is thus common knowledge that the occurrence of
read(Bob) will be observed by both agents. Suppressing the inner expression for the
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moment, regressing using the above-mentioned identity gives:

R(PKnows((A ∪B)∗, φ, do(read(B), S0)))

= ∀c, c′ : PKnows(T (T ((A ∪B)∗, {}, c), read(B), c′),R(R(φ, c), c′), S0)

= ∀c, c′, c′′ : PKnows0(T (T (T ((A ∪B)∗, {}, c), read(B), c′), {}, c′′),

R(R(R(φ, c), c′), c′′), S0)

We begin by evaluating T (π, {}, c) :

T ((A ∪B)∗, {}, c) = x⇐ {} ; (Ta(A, x) ∪ Ta(B, x))∗ ; ?x = c

With the cases for Ta(agt, x) both evaluating to:

Ta(agt, x) = z ⇐ Obs(agt, x) ; agt ; ∃x ; ?Legal(x) ∨ x = {} ; ?Obs(agt, x) = z

Since we know all possible observations that Alice could make, let us expand the path
Ta(A, x) by enumerating the possible values for z. The first line in the result gives
the case where Obs(Alice, x) = {}, and the last line is the case where Obs(Alice, x) =
read(Alice)#r. All other lines are where Alice simply observes the action x.

Ta(A, x) =

?x = {} ∨ (x = read(B) ∧ ¬IR(A))) ; A ;

∃x ; ?x = {} ∨ (x = read(B) ∧ IR(B) ∧ ¬IR(A))

∪ ?x = enter(A) ; A ; ∃x ; ?x = enter(A) ∧ IR(A)

∪ ?x = enter(B) ; A ; ∃x ; ?x = enter(B) ∧ IR(B)

∪ ?x = leave(A) ; A ; ∃x ; ?x = leave(A) ∧ ¬IR(A)

∪ ?x = leave(B) ; A ; ∃x ; ?x = leave(B) ∧ ¬IR(B)

∪ ?x = read(B) ∧ IR(A) ; A ; ∃x ; ?x = read(B) ∧ IR(A) ∧ IR(B)

∪ ∃r ; ?x = read(A) ∧ loc(r) ; A ; ∃x ; ?x = read(A) ∧ IR(A) ∧ loc(r)

Now consider starting with x set to {} and following this path some number of
times. On the first iteration, x may get rebound to either {} or read(B). Subsequent
iterations may alternate between these values, but can never bind x to any other
action. An analogous argument for Ta(B, x) shows that the path T ((A ∪B)∗, {}, c)
can be simplified to consider only the actions {}, read(A) and read(B), with any
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other binding of x being unreachable:

T ((A ∪B)∗, {}, c) = x⇐ {} ; (

?x = {} ∨ (x = read(B) ∧ ¬IR(A))) ; A ;

∃x ; ?x = {} ∨ (x = read(B) ∧ IR(B) ∧ ¬IR(A))

∪ ?x = {} ∨ (x = read(A) ∧ ¬IR(B))) ; B ;

∃x ; ?x = {} ∨ (x = read(A) ∧ IR(A) ∧ ¬IR(B))

∪ ?x = read(B) ∧ IR(A) ; A ; ∃x ; ?x = read(B) ∧ IR(A) ∧ IR(B)

∪ ∃r ; ?x = read(A) ∧ loc(r) ; A ; ∃x ; ?x = read(A) ∧ IR(A) ∧ loc(r)

∪ ?x = read(A) ∧ IR(B) ; B ; ∃x ; ?x = read(A) ∧ IR(B) ∧ IR(A)

∪ ∃r ; ?x = read(B) ∧ loc(r) ; B ; ∃x ; ?x = read(B) ∧ IR(B) ∧ loc(r)

)∗ ; ?x = c

This path matches with our intuitions about the observability of actions. Since the
enter and leave actions are always public, they can never be mistaken for the empty
action and are irrelevant in the path T (π, {}, c). Moreover, the binding of x may
only switch from {} to read(B) if there is a possible world in which Alice is not in
the room, reflecting the conditions under which that action would be hidden.

Next we evaluate the T (π, read(B), c′) portion, which will produce:

T (T ((A ∪B)∗, {}, c), read(B), c′) = x′ ⇐ read(B) ; x⇐ {} ;

(Ta(Ta(A, x), x′) ∪ Ta(Ta(B, x), x′))∗ ; ?x = c ; ?x′ = c′

As before, the only possible values of x′ are {}, read(A) and read(B). None of these
actions affect the tests present in T ((A ∪ B)∗, {}, c), so we leave them unchanged.
Expanding the applications of Ta gives the following inside the iteration operator:

?x = {} ∨ (x = read(B) ∧ ¬IR(A))); Ta(A, x′);

∃x; ?x = {} ∨ (x = read(B) ∧ IR(B) ∧ ¬IR(A))

∪ ?x = {} ∨ (x = read(A) ∧ ¬IR(B))); Ta(B, x′);

∃x; ?x = {} ∨ (x = read(A) ∧ IR(A) ∧ ¬IR(B))

∪ ?x = read(B) ∧ IR(A) ; Ta(A, x′) ; ∃x ; ?x = read(B) ∧ IR(A) ∧ IR(B)

∪ ∃r ; ?x = read(A) ∧ loc(r) ; Ta(A, x′) ; ∃x ; ?x = read(A) ∧ IR(A) ∧ loc(r)

∪ ?x = read(A) ∧ IR(B) ; Ta(B, x′) ; ∃x ; ?x = read(A) ∧ IR(B) ∧ IR(A)

∪ ∃r ; ?x = read(B) ∧ loc(r) ; Ta(B, x′) ; ∃x ; ?x = read(B) ∧ IR(B) ∧ loc(r)
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We can complete this expansion using the previously calculated result for Ta(A, x),
but will proceed leaving this implicit. Finally, we must apply T again for the
T (π, {}, c′′) portion. The process is identical and we will not repeat it here.

We next evaluate this path over the initial epistemic relation of the agents, about
which we know:

PKnows0((A ∪B)∗, IR(A) ∧ IR(B), S0)

Consider how this restricts the possible bindings of x, x′ etc. For x to switch
from its initial value of {} to read(A) (resp. read(B)) the path must traverse a test
for ¬IR(B) (resp. ¬IR(A)). Since we know that these tests will never succeed on
the initial epistemic frame, we can conclude that x will always be bound to {}. Since
the path insists that x = c at termination, this is the only interesting value for c –
any value of c other than {} will result in no worlds being reachable by the regressed
path and will thus have PKnows0 vacuously true. By a similar argument, we find
that the only interesting values of c′ and c′′ are read(B) and {} respectively.

Turning now to the regression of the inner formula, we have:

R(R(R(∃x : Knows(B, loc = x), c), c′), c′′)

= R(R(R(∃x : Knows(B, loc = x), {}), read(B)), {})

= R(R(∃x : Knows(B, loc = x), read(B), {})

= true

Thus for c = {}, c′ = read(B), c′′ = {} the known formula is a tautology, while
for any other values the regressed epistemic path has no reachable worlds. The
example is therefore entailed by the domain.

Example 6. After Bob reads the invitation, the location is not common knowledge

D ∪DobsK 6|= PKnows((A ∪B)∗, loc = C, do(read(B), S0))

Regression of the epistemic path proceeds as with the previous example, but
regression of the inner formula no longer produces a tautology. If we ignore the path
components dealing with c and c′′, which from the previous example we know to be
redundant, regressing this expression produces the following:
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PKnows0(. . . ; (

∪ ?x′ = read(B) ∧ IR(A) ; A ; ∃x′ ; ?x′ = read(B) ∧ IR(A) ∧ IR(B)

∪ ∃r ; ?x′ = read(B) ∧ loc(r) ; B ; ∃x′ ; ?x′ = read(B) ∧ IR(B) ∧ loc(r)

∪ . . . )∗; . . . , loc = C, S0)

This expression basically asserts that if a situation in the initial epistemic frame
can be reached by only traversing situations in which IR(A) and IR(B) holds, then
that situation must entail that loc = C. In the previous example, the inner formula
was a simple tautology and this was vacuously true.

In this case (and very roughly speaking) the regressed path indicates that read(B)
can potentially result in common knowledge of the party’s location, but only if hav-
ing common knowledge of the preconditions of read(B) is enough to establish com-
mon knowledge that loc = C . Since no such information is given in the domain
description, the example is not entailed.

Example 7. After Alice also reads the invitation, the location is common knowledge:

D ∪DobsK |= PKnows((A ∪B)∗, loc = C, do(read(A), do(read(B), S0)))

The additional action here can be handled in the same manner as the previous
examples, but the paths quickly become too cumbersome to present on the page. We
will not repeat the working, but simply state that this is indeed a valid consequence
of our theory. Note, however, that it depends on having common knowledge that
both agents are in the room.

8.7 Comparison with LCC

Having constructed our account of complex epistemic modalities in the situation
calculus, let us now reflect on some of the similarities and differences between our
approach and the Logic of Communication and Change of van Benthem et al. [119].

The most obvious difference is that our formalism supports - indeed, must sup-
port - first-order preconditions and effects and is not limited to finite domains. By
contrast, LCC is propositional and actions must be explicitly specified in terms of a
finite update model. This is for the most part simply reflective of the different tra-
ditions from which these formalisms emerge; of the underlying differences between
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modal logics of action and the situation calculus [117]. It is likely that LCC could
be expanded into a first-order modal formalism without significant modification.
We note, however, that the macro-based approach of the situation calculus auto-
matically settles the various semantic issues that can complicate first-order modal
logics: quantifying into modalities; de-dicto vs de-re; rigid vs monotonic vs arbitrary
domains; etc [32].

Another important difference is that in the situation calculus, actions are con-
crete terms in the logic that can be manipulated and quantified over. In LCC, the
update models responsible for changing the world come from outside the world itself,
and must be specified as an explicit structure whenever they are used. They cannot
be quantified over. This difference is key to our handling of asynchronous domains,
by allowing agents to consider arbitrarily-long sequences of hidden actions. While
LCC is capable of representing hidden actions, the agents cannot account for them
and they cause knowledge to degenerate into belief [119, section 5.2].

Our formalism also has the advantage that it can be used by a situated agent
to reason about its own knowledge using its local view v, including reasoning about
common knowledge using a query such as:

D ∪DobsK |= Knows(agt,PKnows((
⋃
a∈G

a)∗, φ)), v)

This ability comes from having views reified as first-order terms. While LCC
provides powerful mechanisms for reasoning about multi-agent knowledge, it does
not appear to be suitable for reasoning in multi-agent domains.

For a more detailed comparison, consider the operation of the program trans-
former TUij of LCC. First, we have the reduction rule for epistemic programs:

[U, ei][π]φ ⇒
n−1∧
j=0

[TUij (π)][U, ej ]φ

Since the update model U is finite, this rule can construct a finite conjunction of
the possible actions j = 0 through j = n− 1, and separately consider the conditions
under which action i would be mistaken for action j. Our regression rule lifts this
to the first-order case by quantifying over all actions:

R(PKnows0(π, φ, do(c, s))) def= ∀c′ : PKnows0(T (π, c, c′),R(φ, c′), s)

If the Action sort were finite, we could replace this quantifier with a conjunction
to get essentially the same rule as LCC. Next, consider the definition of the TUij
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transformer from LCC:

TUij (agt) def=

?pre(ei); a if eiR(agt)ej

?⊥ otherwise

TUij (?φ) def=

?pre(ei) ∧ [U, ei]φ if i = j

?⊥ otherwise

TUij (π1;π2) def=
n−1⋃
k=0

(TUik (π1);TUkj(π2))

TUij (π1 ∪ π2) def=TUij (π1) ∪ TUij (π1)

TUij (π∗) def=KU
ijn(π)

Apart from the π∗ case, which we will discuss separately, these definitions are
broadly similar to the rules for our epistemic path regressor from Definition 26.
Where our rules use a fresh variable to track the “current action” being performed
in each situation, these rules use external indices i and j and enumerate each of the
finitely-many actions. The case for a base agt modality encodes the possibility of
that agent mistaking event ei for event ej , which is represented explicitly by the
relation R(agt) from the update model. The case for π1;π2 uses a finite disjunction
to permit any intermediate event k.

The π∗ case in LCC is handled by appealing to a variant of Kleene’s construction
on finite automata, whereby all paths through the automata are enumerated by
progressively including more and more states [63, Theorem 2.5.1]. The auxiliary
operator KU

ijk(π) represents all the paths from i to j through the update model U
that can be generated by following π zero or more times, but without stopping at
intermediate actions numbered greater than k:

KU
ij0(π) def=

?> ∪ TUij if i = j

?TUij otherwise

KU
ij(k+1)(π) def=



(KU
kkk(π))∗ if i = j = k

(KU
kkk(π)∗);KU

kjk(π) if i = j 6= k

KU
ikk(π); (KU

kkk(π))∗ if i 6= k = j

KU
ijk(π) ∪ (KU

ikk(π); (KU
kkk(π))∗;KU

kjk(π)) otherwise

The definition TUij (π∗) def= KU
ijn(π) thus permits paths using any of the n possible
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intermediate events. The proof that TUij works as required then requires several
lemmas that establish the validity of this KU

ijk construction.

Contrast this construction with our own rule for handling the π∗ case:

Ta(π∗, x) def= Ta(π, x)∗

Since we are using first-order dynamic logic, we do not need to explicitly enu-
merate all possible intermediate states reached by following π∗. We argue that our
formulation, using a variable to keep track of the “current action” in a regressed
epistemic path, is a more natural expression of the intended operation of the path
regression operator. Our correctness proofs are correspondingly simpler. The more
complicated Kleene-style operator of LCC is required in order to render epistemic
path regression into a propositional formalism.

In synchronous domains with a finite state-space the situation calculus may not
offer a gain in expressiveness, as these domains could be propositionalised and for-
mulated in LCC. However, it can certainly provide a more succinct axiomatisation.
Moving beyond such domains, our formalism allows hidden actions to be considered
and also offers the potential to incorporate other rich domain features that have
been developed for the situation calculus, such as continuous time and actions with
duration.

8.8 Answering the Regressed Query

We are now in a position to reduce a complex epistemic query PKnows(π, φ, σ)
at some future situation to an epistemic query PKnows0(T ∗(π),R∗(φ), S0) at the
initial situation. While this is a significant gain for effective automated reasoning,
it still remains to calculate and answer the regressed query.

As with individual knowledge, we assume that queries will be handled by a
special-purpose modal theorem prover rather than by expanding the macros. In
order to calculate the persistence conditions in regression rules (8.3,8.4), we require
static domain reasoning about PKnows0 modalities. Likewise, to answer the re-
gressed query, one must perform initial situation reasoning about PKnows0 modal-
ities. While we have gained the ability to use proper regression rules, we have moved
from the semi-decidable case of purely first-order reasoning to the undecidable case
of reasoning in FODL, which is known to be Π1

1-hard in general [49].

Facing the potential for undecidability is nothing new for the situation calculus,
and we proceed in the tradition of previous work: by identifying domain restrictions
that enable more effective reasoning.
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As discussed in Sections 2.1.3 and 6.4.3, one of the best ways to gain decidability
in the situation calculus is to assume that non-situation sorts such as Action and
Object are finitely enumerable. This allows the domain to be “propositionalised”
and queries to be answered using propositional logic. Will the same restriction allow
us to gain decidability for our complex epistemic modalities?

Since we do not use Situation terms in epistemic paths, it seems we should be
able to translate PKnows0 modalities in such domains from FODL into PDL by
enumerating the possible values for each path variable. This is not straightforward,
however, since variable re-bindings can be performed inside the scope of an iteration.
It is not obvious how to convert such a path into PDL.

Here we close the loop from our first-order formalism back to the propositional
formalism of LCC – the Kleene-style construction used to regress π∗ paths in LCC
is precisely what is required to translate FODL into PDL and gain decidability.

Suppose the epistemic path π contains n path variables, then let the state of that
path be a vector of length n giving the current value of each variable. Since variable
domains are finite, we can finitely enumerate all possible states of the path. Let
them be labelled 0 through m, and let φi represent the formula obtained from φ by
replacing all path variables with their values in state i. Let φ↓ represent the standard
propositionalisation of first-order formula φ. A FODL modality PKnows0(π, φ) can
be translated into a PDL modality Prop[PKnows0(π, φ)] as follows. Propij [π]
represents the propositionalisation of path π with start state i and end state j:

Prop[PKnows0(π, φ)] def=
m∧
i=0

m∧
j=0

PKnows0(Propij [π], φ↓)

Propij [agt]
def=

agt if i = j

?⊥ otherwise

Propij [?φ] def=

?φi↓ if i = j

?⊥ otherwise

Propij [∃xn] def=

?> if i, j differ only at n

?⊥ otherwise

Propij [π1;π2] def=
m⋃
k=0

(Propik[π1]; Propkj [π2])
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Propij [π1 ∪ π2] def= Propij [π1] ∪Propij [π2]

Propij [π
∗] def= PropKijm(π)

PropKij0[π] def=

?> ∪Propij [π] if i = j

Propij [π] otherwise

PropKij(k+1)[π] def=PropKijk[π] ∪ (PropKikk[π]; PropKkkk[π]∗; PropKkjk[π])

While this demonstrates that finite domains are decidable in principle, it should
not be used as an implementation technique in practice, as it will produce an ex-
ponential blowup in the size of the query. We will return to this point in Section 8.9.

To answer the regressed query in the initial situation, we may be able to as-
sume that initial knowledge is specified in a restricted form that further increases
the effectiveness of reasoning. For example, it may be that the initial situation is
completely known and uncertainty is introduced only due to partial observability of
actions. In this case the initial epistemic frame contains the lone situation S0, and
the regressed path can be reduced to a series of tests and variable re-bindings.

More generally, we may have a specific possible-worlds model to represent the
group’s knowledge in the initial situation. In this case the regressed query can be
answered using model-checking rather than satisfiability; for PDL this reduces the
complexity from EXPTIME-complete to PTIME-complete, a significant win [53].

It may also be possible to identify restricted fragments of FODL that are suf-
ficient to capture the regression of common knowledge in restricted domains. For
example, van Benthem et al. [119] show that in domains with public actions the
regression of common knowledge can be expressed using a relativised common-
knowledge operator, rather than requiring the full expressivity of dynamic logic.
Investigating whether this also holds for the situation calculus could be a launching
point for future work in this direction.

We have produced a preliminary reasoning engine based on our technique for
propositional domains, utilising a modified version of the PDL prover from the
Tableaux Workbench suite [1], and have used it to verify some simple examples.
However, due to the exponential blowup in path size using the propositionalisation
scheme described above, we have so far not validated the examples from Section 8.6
with this implementation. As usual, details on obtaining the source code can be
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found in Appendix B.

8.9 Discussion

In this chapter we have introduced a technique for representing and reasoning about
complex epistemic modalities in the situation calculus. In order to formulate an ef-
fective reasoning procedure, we have had to move beyond just Knows and CKnows

and introduce a powerful epistemic path language based on dynamic logic. Mirror-
ing the development of knowledge for individual agents, group-level modalities are
introduced as macros of the form PKnows(π, φ, s) where π is a complex epistemic
path. To avoid having to expand these macros during reasoning, we have modified
the regression operator to treat them as primitive fluents.

Our development was inspired by and has clear parallels with the Logic of Com-
munication and Change of van Benthem et al. [119]. We choose the situation calculus
for its much richer ontology, e.g. preconditions and effects are first order, while ac-
tions take arguments and may be performed concurrently. On one hand, this forces
us to use a more powerful dynamic logic for our epistemic language and run the
risk of undecidability. On the other, it actually simplifies some aspects of our pre-
sentation. We do not need explicit update frames, and the definition of our path
regressor does not require an auxiliary Kleene-style operator to handle iteration.

As with the previous chapter, hidden actions are handled using the persistence
condition meta-operator to perform a fixpoint calculation. While the expressiveness
of our epistemic path language means that answering a regressed knowledge query
can be difficult in the general case, we have shown that for finite domains we maintain
the ability to propositionalise the queries and produce a robustly decidable theory.

Demonstrating the utility of our approach, we have presented an example of rea-
soning about common knowledge in an asynchronous, partially observable domain.
This powerful new ability is a first for the situation calculus.

Our synchronous path-knows operator PKnows0 is also significant new contri-
bution in its own right. For synchronous domains this operator is provably equivalent
to PKnows and allows common knowledge to be handled using a purely syntactic
transformation, rather than requiring a fixpoint calculation to deal with hidden ac-
tions. This chapter thus provides powerful new reasoning techniques for group-level
knowledge that are comparable in complexity to the standard account of epistemic
reasoning in synchronous domains, while also extending its reach into asynchronous
domains where some inductive reasoning is required.
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As discussed in Section 8.8, reasoning in our new epistemic language can be very
expensive in general. Although we have demonstrated that it can be reduced to
PDL in finite domains, naive use of this reduction is not suitable for automated
reasoning in any but the simplest domains. Like the reduction of first-order logic
into propositional logic, it results in an exponential blowup in the size of the formula.

In standard first-order logic this is avoided using a free-variable prover which can
avoid generating cases that will obviously not lead to a proof. Effective automated
reasoning in our epistemic language would seem to require similar use of free variables
to control this exponential blowup. We are aware of no existing systems that could
easily support this reasoning.

We have the beginnings of a free-variable prover for our logic, using a combi-
nation of the first-order Shannon Graph techniques of [87] and the PDL tableaux
rules described in [1], but there is substantial work still to be done towards this goal.

There is also an important open question left by our work: does FODL precisely
characterise the expressivity required to regress common knowledge? This chapter
has provided an upper bound on the required expressivity by formulating a sound
and complete regression rule for FODL knowledge modalities. It is also clear that
the standard Knows and CKnows modalities do not have sufficient expressivity.
But is there a language between these two bounds that is rich enough to regress
common knowledge, while having a more tractable reasoning procedure than full
dynamic logic?

Our epistemic path regressor constructs paths with a very regular internal struc-
ture, so the possibility cannot be ruled out at this stage. For example, we note
that when starting from the expression for common knowledge, T will not generate
nested iteration operators. Formulae in such star-normal form are known to simplify
proof search in PDL [1]. Identifying more restricted fragments that can simplify our
epistemic language, even if they are only complete for restricted classes of action
theory, is a promising avenue for future research.

On a related note, let us briefly justify why we construct a new dynamic logic
semantics in the situation calculus rather than adapting the existing semantics of
Golog for our purpose. The difficulty is that Golog has no notion of state – while
the Golog operator π(x, δ(x)) is similar to the FODL operator ∃x, its effect is lo-
calised to the contained program δ. By contrast, FODL allows variable assignments
to affect the entire remaining program. While it is possible to simulate global state
in Golog using mutually recursive procedure calls, the presentation and proofs are
much cleaner using a special-purpose language as we have developed in this chapter.
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Once again, let us note that we deal only with a logic of knowledge in this chap-
ter, rather than a logic of belief. The discussion on belief-based formalisms at the
end of Chapter 7 also applies to our group-level formalism. However, there is an
intriguing opportunity for future research here – can an approach similar to the one
developed in this chapter provide effective reasoning techniques for other group-level
mental attitudes in the situation calculus, such a mutual belief or joint goals? We
hope that this chapter can provide a foundation for exploring such ideas.

In Chapter 1 we noted a famous result of Halpern and Moses [39], which states
that common knowledge cannot be obtained through asynchronous communication.
Our complex epistemic modalities reflect this result in a more general way. Suppose
we have an action a that is never observable by a particular agent:

Obs(agt, a) = o ≡ o = {}

Then according to the definition of K0, the situations considered possible by agt

after the occurrence of a are a superset of the situations considered possible by agt
before the occurrence of a:

K0(agt, s′, s) → K0(agt, s′, do(a, s))

Thus actions that are always hidden from an agent, such as asynchronous com-
munication actions, cannot remove possible situations; they can only add additional
uncertainty about the state of the world. For a proposition φ to be common knowl-
edge after the occurrence of such an action, it must already have been common
knowledge before that action. Always-hidden actions therefore do not increase the
common knowledge of the agents, as demonstrated by the results of [39].

Our explicit formulation of Obs allows the epistemic path regressor T (π, c, c′) to
deal with more subtle cases, such as actions that are only observable under certain
conditions. Intuitively, if the agents have common knowledge that an action c will be
simultaneously observed, then the occurrence of c can increase the common knowl-
edge of the agents. But if there is any path through the agent’s epistemic frame
which allows the occurrence of c to be hidden from an agent, then their epistemic
frame after the occurrence of c will still contain those situations from before the
occurrence of c, and their ability to obtain common knowledge will be limited.
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Chapter 9
Conclusion

This thesis has laid the foundations for reasoning about asynchronous multi-agent
domains in the situation calculus. As highlighted by our initial investigations and im-
plementation of the multi-agent Golog variant MIndiGolog, the standard reasoning
and planning machinery of the situation calculus often depends on an assumption of
synchronicity. In many cases, this synchronicity is enforced by requiring all actions
to be publicly observable.

We identified three main limitations of the situation calculus when trying to ex-
tend its reach into asynchronous domains. First, it generates fully-ordered sequences
of actions as the output of the Golog execution planning process, which cannot be
feasibly executed in the face of hidden actions. Second, its standard account of
agent-level knowledge cannot effectively handle arbitrarily-long sequences of hidden
actions. Finally, it lacks a formal account of reasoning about group-level epistemic
modalities such as common knowledge, which are vital for managing coordination
in multi-agent domains.

At the core of our approach to overcoming these limitations is a new, explicit
representation of the local perspective of each agent. By formalising what each
agent observes when a particular set of actions is performed, and its corresponding
local view in each situation, we are able to approach reasoning and planning in a
principled way without making any assumptions about the dynamics of the domain.
In particular, we can explicitly define and represent asynchronous domains as those
in which some action occurrences generate no observations; in other words, domains
in which agents cannot determine how many actions have been performed.

Building on this foundation, we have developed four key extensions to the rea-
soning and planning machinery of the situation calculus that work to overcome its
current limitations in asynchronous multi-agent domains.
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9.1 Contributions

Our first key contribution defines a partially-ordered branching action structure to
replace raw situation terms as the output of the Golog execution planning process.
Called joint executions, they represent a set of many possible histories that could
constitute a legal execution of the program. They allow independent actions to be
performed independently, while ensuring that inter-agent synchronisation is always
possible when required. By formulating these requirements explicitly in terms of the
local view available to each agent, we identify joint executions that are feasible to
perform in the world despite potential asynchronicity in the domain.

The utility of these structures was demonstrated by implementing an offline ex-
ecution planner that produces joint executions as its output. By imposing some
simple restrictions on the theory of action, the planner is able to reason about joint
executions without having to explicitly consider the exponentially-many possible
histories of such a partially-ordered structure. It can thus make use of the standard
reasoning machinery of the situation calculus developed in existing Golog implemen-
tations.

Second, we have characterised a kind of inductive query that we call a prop-
erty persistence query. These queries are restricted enough to be amenable to a
special-purpose reasoning algorithm based on a meta-level fixpoint calculation. A
simple iterative approximation algorithm was presented and shown to be complete
for several interesting cases. More importantly, we have shown that such queries
can always be replaced with a uniform formula called the persistence condition, in
a way that integrates well with the standard regression operator. This allows cer-
tain second-order aspects of our formulation to be “factored out” and handled using
special-purpose tools, while maintaining the use of regression as the primary rea-
soning technique.

The third major contribution is a powerful new account of individual-level epis-
temic reasoning, in which an agent’s knowledge is expressed directly in terms of
its local observations. In asynchronous domains agents are required to account
for arbitrarily-long sequences of hidden actions and must therefore perform some
inductive reasoning. By precisely characterising the inductive component of their
reasoning in terms of a property persistence query, we factor it out of the reasoning
process and provide a regression-based technique for answering knowledge queries.

Basing our formalism explicitly on an agent’s observations provides two impor-
tant benefits. It makes our formalism robust to theory elaboration, so that our

190



9.2. FUTURE WORK

theorems and our regression rule apply unmodified as more complex knowledge-
producing actions are added to the domain. Second, it means that a situated agent
can directly use our regression rules to reason about its own knowledge using only
its local information.

We have also demonstrated that if the theory of action is known to be syn-
chronous, then our regression rule does not require inductive reasoning and it reduces
to a simple syntactic transformation. Our account of individual-level knowledge thus
provides a flexible new formalism that is comparable in reasoning complexity to the
standard account of knowledge for synchronous domains, while at the same time
extending gracefully to asynchronous domains where inductive reasoning is required.

Finally, we have introduced a powerful new language of complex epistemic modal-
ities to the situation calculus. Based on an epistemic interpretation of dynamic logic,
these modalities are expressive enough to formulate a regression rule for common
knowledge while still permitting arbitrarily-long sequences of hidden actions to be
handled using the persistence condition operator.

Our work provides the first formal account of effective reasoning about common
knowledge in the situation calculus. If the domain is restricted to be synchronous,
our regression rule does not require inductive reasoning and common knowledge can
be reasoned using a purely syntactic manipulation, a powerful new ability in its own
right. By basing our formalism on an explicit representation of each agent’s local
view, it can also extend gracefully to handle asynchronous domains in which some
inductive reasoning is required.

These contributions provide a powerful fundamental framework for the situation
calculus to represent and reason about asynchronous multi-agent domains.

9.2 Future Work

Throughout the thesis, we have also identified areas where further work is required
to bring our new techniques together with practical systems built on the situation
calculus. Work continues on developing a MIndiGolog execution planner capable
of coordinating online execution of a shared program in asynchronous domains,
building on the techniques we have developed here. The most promising avenues of
future research are summarised below.

Chapter 8 developed a precise characterisation of the processes required to rea-
son about common knowledge in the situation calculus, and demonstrated that it is
decidable in principle in finite domains by conversion into PDL. Unfortunately exist-
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ing PDL provers cannot be used for even very simple domains, due to an exponential
blowup in problem size during this conversion. We have some initial intuitions on
constructing a free-variable prover for our modalities to avoid performing this con-
version in its entirety, but there is still significant implementation work to be done
before the technique can be applied in practical domains.

There is also the possibility of identifying fragments of our epistemic language
that have more tractable reasoning procedures, but are still powerful enough to
capture the regression of common knowledge under certain domain restrictions. A
promising starting point would be to extend the relativised common knowledge
operator of van Benthem et al. [119] to the first-order case, and determine whether
it suffices for regressing common knowledge when all actions are public, as it does
in propositional formalisms.

While a possible-worlds formulation of knowledge as developed in this thesis
provides an excellent theoretical foundation for epistemic reasoning, possible-worlds
reasoning can be highly intractable in practice. In Section 7.6 we suggested a way
to combine the formalism for tractable literal-level knowledge of [23] with our new
observation-based semantics, which would be interesting to explore in more detail.
It would also be interesting to extend the approach of [23] with a literal-level account
of common knowledge, to enable approximate reasoning about group-level epistemic
modalities. Such a formalism would need to decompose disjunctions inside epistemic
paths, and it is far from clear whether this could be done in a principled manner.

Finally, agents in a cooperative team need not consider all possible actions of
their teammates, since they know that the other agents will behave according to
some protocol. We have identified a potential approach based on the work of [33]
that would allow protocols to be expressed as Golog programs, but significant work
will be required to produce a detailed theory based on these ideas.
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Appendix A
Detailed Proofs

This appendix contains complete proofs for various lemmas and theorems throughout
the paper, along with some additional lemmas.

Theorem 5. For any n ∈ N, PnD(φ, α)[σ] iff φ holds in σ and in all successors of σ
reached by performing at most n actions satisfying α:

D |= PnD(φ, α)[σ] ≡∧
i≤n
∀a1, . . . , ai :

∧
j≤i

α[aj , do([a1, . . . , aj−1], σ)] → φ[do([a1, . . . , ai], σ)]


Proof. By induction on the natural numbers. For n = 0 we have φ[σ] ≡ φ[σ] by
definition. For the inductive case, we expand the definition of PnD(φ, α)[σ] to get the
following for the LHS:

Pn−1
D (φ, α)[σ] ∧ ∀a : RD(α[a, σ])→ RD(Pn−1

D (φ, α)[do(a, σ)])

By the inductive hypothesis we can equate Pn−1
D (φ, α)[σ] in this LHS with all

but the i = n clause from the RHS conjunction, and we suppress them on both sides.
If we also drop the regression operators we are left with the following to establish:

D |= ∀a : α[a, σ]→ Pn−1
D (φ, α)[do(a, σ)] ≡

∀a1, . . . , an :

∧
j≤n

α[aj , do([a1, . . . , aj−1], σ)] → φ[do([a1, . . . , an], σ)]


We can again use the inductive hypothesis on Pn−1

D in the LHS of this equiva-
lence. If we then distribute the α[a, σ] implication over the outermost conjunction
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and collect quantifiers, we obtain the following for the LHS:∧
i≤n−1

∀a, a1, . . . , ai :α[a, σ] ∧
∧
j≤i

α[aj , do([a, a1, . . . , aj−1], σ)]→ φ[do([a, a1, . . . , ai], σ)]


Renaming a ⇒ a1, a1 ⇒ a2, . . . ,ai ⇒ ai+1, we see that each of the i < n − 1

clauses on the LHS is equivalent to one of the i < n clauses that have been suppressed
on the RHS. The remaining i = n− 1 clause is equivalent to the required RHS:

∀a1, . . . , an :

∧
j≤n

α[aj , do([a1, . . . , aj−1], σ)] → φ[do([a1, . . . , an], σ)]


We therefore have the desired equivalence.

Lemma 7. For situation terms s and s′, and agent agt:

D ∪DobsK |= Legal(s) ∧ s ≤LbU(agt) s
′ → Legal(s′)

Proof. Since LbU implies Legal, s ≤LbU(agt) s
′ implies s ≤Legal s′. Given the defini-

tion of Legal(s) as root(s) ≤Legal s, we have the implication as desired.

Lemma 8. For situation terms s and s′, and agent agt:

D ∪DobsK |= s ≤LbU(agt) s
′ → V iew(agt, s′) = V iew(agt, s)

Proof. By induction on situations, using the definition of V iew from equation (4.1).
In the base case of s′ = s the lemma is trivial. For the inductive case let s′ =
do(c, s′′), with s ≤LbU(agt) s

′′ and V iew(agt, s′′) = V iew(agt, s) by the inductive
hypothesis. By the definition of ≤LbU(agt) we have that Obs(agt, c, s′′) = {}. By the
definition of V iew we then have that V iew(agt, s′) = V iew(agt, s′′), which equals
V iew(agt, s) giving the lemma as required.

Lemma 9. For situation terms s and s′′, and agent agt:

D ∪DobsK |= K(agt, s′′, s) → K0(agt, root(s′′), root(s))

Proof. By induction on situations. The lemma is trivial in the base case of Init(s).
For the do(c, s) case, suppose that we have K(agt, s′′, do(c, s)). Then by equation
(7.6) there is some s′ such that s′ v s′′ and K(agt, s′, s). Then root(s′′) = root(s′),
and K0(root(s′), root(s)) by the inductive hypothesis, giving the required result.
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Lemma 10. For situation terms s and s′′, and agent agt:

D ∪DobsK |= K(agt, s′′, s) → Legal(s′′)

Proof. By induction on situations. All s′ such that K0(agt, s′, s) are initial and
therefore legal. So using equation (7.7) in the base case, if K(agt, s′′, s) then there
must be an s′ such that Init(s′) and s′ ≤LbU(agt) s

′′, making s′′ legal by Lemma 7.
For the do(c, s) case, equation (7.6) ensures that do(c′, s′) ≤LbU(agt) s

′′ for some s′,c′

satisfying K(agt, s′, s) and Legal(c′, s′). So s′ is legal by the inductive hypothesis,
making s′′ legal by Lemma 7 as required.

Lemma 11. For situation terms s and s′′, and agent agt:

D ∪DobsK |= K(agt, s′′, s) → V iew(agt, s′′) = V iew(agt, s)

Proof. By induction on situation terms. For the base case of Init(s), using equa-
tion (7.7), K(agt, s′′, s) implies that there must be an s′ such that Init(s′) and
s′ ≤LbU(agt) s

′′. Therefore V iew(s′′) = V iew(s′) = ε = V iew(s) as required.
For the do(c, s) case, suppose Obs(agt, c, s) = {}. We have V iew(agt, do(c, s)) =

V iew(agt, s), while equation (7.6) gives us K(agt, s′′, s), which yields V iew(agt, s′′)
= V iew(agt, s) by the inductive hypothesis.

Alternately, suppose Obs(agt, c, s) 6= {}, then equation (7.6) gives us s′,c′ such
that do(c′, s′) ≤LbU(agt) s

′′, Obs(agt, c, s) = Obs(agt, c′, s′), and K(agt, s′, s). By
the inductive hypothesis V iew(agt, s′) = V iew(agt, s), and we have the following:
V iew(agt, s′′) = V iew(agt, do(c′, s′)) = Obs(agt, c, s) · V iew(agt, s′). This is in turn
equal to V iew(agt, do(c, s)) as required.

Theorem 8. For any agent agt and situations s and s′′:

D ∪DobsK |= K(agt, s′′, s) ≡
K0(root(s′′), root(s)) ∧ Legal(s′′) ∧ V iew(agt, s′′) = V iew(agt, s)

Proof. For the if direction, we simply combine Lemmas 9, 10 and 11. For the only-if
direction we proceed by induction on situations. In the base case of Init(s), the ∃s′
part of equation (7.7) is trivially satisfied by root(s′′) and the equivalence holds as
required.

For the inductive case with do(c, s), we have two sub-cases to consider. Suppose
Obs(agt, c, s) = {}: then V iew(agt, s′′) = V iew(agt, do(c, s)) = V iew(agt, s) and
K(agt, s′′, s) holds by the inductive hypothesis, satisfying the equivalence in equation
(7.6). Alternately, suppose Obs(agt, c, s) 6= {}: then we have:

V iew(agt, do(c, s)) = Obs(agt, c, s) · V iew(agt, s) = V iew(agt, s′′)

Since s′′ is legal, this implies there there is some s′,c′ satisfying Obs(agt, c′, s′) =
Obs(agt, c, s), V iew(agt, s′) = V iew(agt, s) and do(c′, s′) ≤LbU(agt) s′′ . This is
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enough to satisfy the ∃s′, c′ part of equation (7.6) and so the equivalence holds as
required.

Theorem 11. Given a basic action theory D ∪DobsK and a uniform formula φ:

D ∪DobsK |= Knows(agt, φ, s) ≡ R(Knows(agt, φ, s))

Proof. To obtain this result, we must establish that our new regression rules in
equations (7.10) and (7.11) are equivalences under the theory of action D ∪ DobsK .
The mechanics of the proof mirror the analogous proof in [98], but with the addition
of a persistence condition application.

For notational clarity we define the abbreviation PEO(agt, φ, o, s) (for “persists
under equivalent observations”) which states that φ holds in all legal futures of s
compatible with observations o:

PEO(agt, φ, o, s) def=
∀c′ : Obs(agt, c′, s) = o ∧ Legal(c′, s)→

[
∀s′ : do(c′, s) ≤LbU(agt) s

′ → φ[s′]
]

Expanding the definition of the Knows macro at do(c, s), and applying the successor
state axiom from equation (7.6) to the K(agt, s′′, do(c, s)) term, we can produce the
following:

Knows(agt, φ, do(c, s)) ≡∀s′′ : K(agt, s′′, do(c, s)) → φ[s′′]
≡∃o : Obs(agt, c, s) = o

∧
[
o = {} → ∀s′ : K(agt, s′, s)→ φ[s′]

]
∧
[
o 6= {} → ∀s′ : K(agt, s′, s)→ PEO(agt, φ, o, s′)

]
Noting that both conjuncts contain sub-formulae matching the form of the

Knows macro, it can be substituted back in to give:

Knows(agt, φ, do(c, s)) ≡∃o : Obs(agt, c, s) = o

∧ [o = {} → Knows(agt, φ, s)]
∧ [o 6= {} → Knows(agt,PEO(agt, φ, o), s)]

For PEO(agt, φ, o, s′) to legitimately appear inside the Knows macro it must
be uniform in the situation variable s′. Applying the persistence condition and
regressing to make the expression uniform, we develop the following equivalence:

PEO(agt, φ, o, s) ≡ ∀c′ : Obs(agt, c′, s) = o ∧ Legal(c′, s)→ R(P(φ,LbU(agt)), c′)

Suppressing the situation term in this uniform formula gives the regression rule
from equation (7.10) as required.
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For S0, a straightforward transformation of equations (2.2) and (7.7) gives:

Knows(agt, φ, S0) ≡ ∀s : K0(agt, s, S0)→
[
∀s′ : s ≤LbU(agt) s

′ → φ[s′]
]

Applying the persistence condition operator, this can easily be re-written as:

Knows(agt, φ, S0) ≡ ∀s .K0(agt, s, S0)→ P(φ,LbU(agt))[s]

This matches the form of the definition for Knows0, which we can substitute in
to give:

Knows(agt, φ, S0) ≡ Knows0(agt,P(φ,LbU(agt)), S0)

Since all situations reachable by K0 are initial, and since regression preserves
equivalence, it is valid to use R(ψ[S0])−1 on the enclosed formula to give:

Knows(agt, φ, S0) ≡ Knows0(agt,R(P(φ,LbU(agt))[S0])−1, S0)

This is the regression rule from equation (7.11) as required. Our regression rules
are thus equivalences under the theory D ∪DobsK , and the theorem holds.

Theorem 12. Given a basic action theory D and a uniform formula φ:

D ∪DobsK |= Knows(agt, φ, v) ≡ R(Knows(agt, φ, v))

Proof. Recall the definition of Knows(agt, φ, v) as follows:

Knows(agt, φ, v) def=
∀s : V iew(agt, s) = v ∧ root(s) = S0 ∧ Legal(s)→ Knows(agt, φ, s)

We also have the following simple corollary of Theorem 8:

D ∪DobsK |= ∀s, s′, s′′ : root(s) = root(s′) ∧ V iew(s) = V iew(s′)
∧K(agt, s′′, s)→ K(agt, s′′, s′)

The definition of Knows(agt, φ, v) is thus equivalent to:

Knows(agt, φ, v) ≡ ¬∃s : V iew(agt, s) = v ∧ root(s) = S0 ∧ Legal(s)
∨ ∃s : V iew(agt, s) = v ∧ root(s) = S0 ∧ Legal(s) ∧Knows(agt, φ, s)

We thus need to find a single witness situation rather than examining all situa-
tions with that view. We proceed by induction over views. For the ε case, S0 serves as
an appropriate witness since it is always legal, V iew(agt, S0) = ε and root(S0) = S0.
Applying the regression rule for Knows(agt, φ, S0) gives us the same expression
as applying the regression rule for Knows(agt, φ, ε). So if R(Knows(agt, φ, ε))
holds then so does Knows(agt, φ, S0). Using S0 as a witness we conclude that
Knows(agt, φ, ε) iff R(Knows(agt, φ, ε)) as desired.
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For the inductive o ·v case we split on whether there is any situation having that
view. Suppose there is no such situation, then the definition of Knows(agt, φ, o · v)
is trivially satisfied and the agent must know all statements. We need to show that
the regression of Knows(agt, φ, o · v) is always entailed by the domain in this case.
The regressed expression is:

Knows(agt,∀c : Obs(agt, c) = o ∧ Legal(c)→ R(P(φ,LbU(agt)), c), v)

If there is no situation having view v, then there is also no situation having view
o · v, and the above is entailed by the inductive hypothesis in this case.

Alternately, suppose there is a situation s having view v but no legal situation
having view o · v. Then all situations s′ that have view equal to v must satisfy
¬∃c : Obs(agt, c, s′) = o∧Legal(c, s′), otherwise we could construct a situation with
view o · v. Since these situations s′ are the only ones that can be K-related to s,
the antecedent in the above implication is falsified at all such situations, and the
regressed expression is equivalent to Knows(agt,>, v) which is trivially entailed.

Finally, suppose there is a legal situation do(c, s) having view o·v. We can assume
without loss of generality that Obs(agt, c, s) = o and V iew(agt, s) = v. Regressing
Knows(agt, φ, do(c, s)) in this case will produce:

R(Knows(agt, φ, do(c, s)) = ∃o′ : Obs(agt, c, s) = o′

∧
[
o′ = {} → Knows(agt, φ, s)

]
∧
[
o′ 6= {} → Knows(agt,∀c′ : Obs(agt, c′) = o′

∧ Legal(c′)→ R(P(φ,LbU(agt)), c′), s)
]

We have that Obs(agt, c, s) = o and o 6= {}, so this is equivalent to:

Knows(agt,∀c′ : Obs(agt, c′) = o ∧ Legal(c′)→ R(P(φ,LbU(agt)), c′), s)

Since this matches the form of R(Knows(agt, φ, o · v)), and we have that the
view of s is v, this will be entailed by the domain precisely when the regression of
Knows(agt, φ, o · v) is entailed by the domain.

Thus if there is no legal situation with view v then R(Knows(agt, φ, v)), is
always entailed, while if there is such a situation s then R(Knows(agt, φ, v)) is
equivalent to R(Knows(agt, φ, s)). The regression rules over observations are thus
equivalences as desired.

Lemma 12. For any epistemic path π:

D ∪DobsK |= KDo0(π, do(c, s), s′′) ≡ ∃µ, µ′, c′, s′ :
µ(x) = c ∧ µ′(x) = c′ ∧

(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ c′ = {} ∧ s′′ = s′

)
∧KDo0(Ta(π, x), µ, s, µ′, s′)

Proof. Proceed by cases, covering each path operator in turn. For the base case of
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an individual agent, we have:

KDo0(agt, do(c, s), s′′) ≡K0(agt, s′′, do(c, s))

Ta(agt, x) = z ⇐ Obs(agt, x) ; agt ; ∃x ; ?Legal(x) ∨ x = {} ; ?Obs(agt, x) = z

Expanding KDo0(Ta(agt, x), µ, s, µ′, s′) thus produces:

KDo0(Ta(agt, x), µ, s, µ′, s′) ≡ z ⇐ Obs(agt, µ(x), s) ∧ ∃s′′ : K0(agt, s′′, s)∧(
Legal(µ′(x), s′′) ∨ µ′(x) = {}

)
∧ Obs(agt, µ′(x), s′′) = z ∧ s′′ = s′

Note that µ and µ′ are never applied to a variable other than x. When we substitute
this into the RHS of the hypothesis, µ(x) and µ′(x) are asserted to be c and c′

respectively, so they can be simplified away to give:

D ∪DobsK |= K(agt, s′′, do(c, s)) ≡
∃c′, s′ :

(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ s′′ = s′ ∧ c′ = {}

)
∧K0(agt, s, s′) ∧

(
Legal(c′, s′) ∨ c′ = {}

)
∧ Obs(agt, c, s) = Obs(agt, c′, s′)

This is the successor state axiom for K0, which is trivially entailed by the domain.

For the ?φ case, we have:

KDo0(?φ, do(c, s), s′′) ≡ φ[do(c, s)] ∧ s′′ = do(c, s)

Ta(?φ, x) = ?R(φ, x)

Giving:

KDo0(Ta(?φ, x), µ, s, µ′, s′) ≡ R(φ, x)[s] ∧ s = s′ ∧ µ = µ′

Substituting into the RHS of the hypothesis, this asserts that c = c′ and hence
s′′ = do(c, s), so the hypothesis is clearly entailed.

The case for ∃y is trivial as KDo0(∃y, s, s′) ≡ s = s′.

The inductive cases are straightforward as Ta is simply pushed inside each oper-
ator. We will take the π∗ case as an example. The inductive hypothesis gives:

KDo0(π, do(c, s), s′′) ≡ ∃µ, µ′, c′, s′ : µ(x) = c ∧ µ′(x) = c′

∧
(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ s′′ = s′ ∧ c′ = {}

)
∧KDo0(Ta(π, x), µ, s, µ,′ s′)

We can apply reflexive transitive closure to both sides of this equivalence, along with
two rearrangements: the LHS is expanded to the four-argument form with ∃µ, µ′′
at its front, and the rigid tests on the RHS are taken outside the RTC operation.
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This produces the following equivalence:

∃µ, µ′′ : RTC[KDo0(π, µ, do(c, s), µ′′, s′′)] ≡
∃µ, µ′, c′, s′ : µ(x) = c ∧ µ′(x) = c′∧

(c′ 6= {} ∧ s′′ = do(c′, s′) ∨ s′ = {} ∧ s′′ = s′c ∧RTC[KDo0(Ta(π, x), µ, s, µ,′ s′)]
(A.1)

Using the definitions of KDo0 and Ta we have:

KDo0(π∗, do(c, s), s′′) ≡ ∃µ, µ′′ : RTC[KDo0(π, µ, do(c, s), µ′′, s′′)]

KDo0(Ta(π∗, x), µ, s, µ′, s′) ≡ RTC[KDo0(Ta(π, x), µ, s, µ′, s′)]

Substituting these into the RTC of the inductive hypothesis from equation (A.1)
gives us the KDo0(π∗) cases we need to satisfy the theorem.

Theorem 14. For any epistemic path π:

D ∪DobsK |= KDo0(π, do(c, s), s′′) ≡
∃c′, s′ :

(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ c′ = {} ∧ s′′ = s′

)
∧KDo0(T (π, c, c′), s, s′)

Proof. Recall the rule for T (π, c, c′):

T (π, c, c′) def= x⇐ c ; Ta(π, x) ; ?x = c′

Expanding KDo0 for this rule:

KDo0(T (π, c, c′), s, s′) ≡ ∃µ, µ′ : µ(x) = c ∧ µ′(x) = c′ ∧KDo0(Ta(π, x), µ, s, µ′, s′)

We can thus substitute KDo0(T (π, c, c′), s, s′) into the RHS of Lemma 12 to get
the required result.

Theorem 15. For any epistemic path π, uniform formula φ and action c:

D ∪DobsK |= PKnows0(π, φ, do(c, s)) ≡ ∀c′ : PKnows0(T (π, c, c′),R(φ, c′), s)

Proof. The mechanics of this proof mirror that of Theorem 11: we expand the
PKnows0 macro, apply Theorem 14 as a successor state axiom for KDo0, re-
arrange to eliminate existential quantifiers, then collect terms back into forms that

212



match PKnows0. We begin with the following:

PKnows0(π, φ, do(c, s)) ≡ ∀s′′ : KDo0(π, do(c, s), s′′) → φ[s′′]
≡ ∀s′′ :

[
∃c′, s′ :

(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ c′ = {} ∧ s′′ = s′

)
∧KDo0(T (π, c, c′), s, s′)

]
→ φ[s′′]

≡ ∀s′′, c′, s′ :
[(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ c′ = {} ∧ s′′ = s′

)
∧KDo0(T (π, c, c′), s, s′)

]
→ φ[s′′]

Case-splitting on the disjunction, we see that:

s′′ = do(c′, s′) ∧ c′ 6= {} →
(
φ[s′′] ≡ R(φ, c′)[s′]

)
s′′ = s′ ∧ c′ = {} →

(
φ[s′′] ≡ R(φ, c′)[s′]

)
This allows us to remove the variable s′′ from the consequent of the implication,

making it redundant in the antecedent and allowing us to eliminate it entirely.
Folding the quantification over s′ back into the PKnows0 macro completes the
proof:

PKnows0(π, φ, do(c, s))
≡ ∀s′′, c′, s′ :

[(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ c′ = {} ∧ s′′ = s′

)
∧KDo0(T (π, c, c′), s, s′)

]
→ R(φ, c′)[s′]

≡ ∀c′, s′ : KDo0(T (π, c, c′), s, s′) → R(φ, c′)[s′]
≡ ∀c′ : PKnows0(T (π, c, c′),R(φ, c′), s)

This is the theorem as required.

Lemma 13. For any epistemic path π:

D ∪DobsK |= KDo0(T (π, {}, {}), s, s′) → KDo0(π, s, s′)

Proof. By a case analysis on the epistemic path operators. For the base case of an
individual agent, we have:

T (agt, {}, {}) =x⇐ {} ; ∃z ; ?Obs(agt, x) = z ; agt ;
∃x ; ?Legal(x) ∨ x = {} ; ?Obs(agt, xa) = z ; ?x = {}

=∃z ; ?z = {} ; agt ; ?Legal({}) ∨ {} = {} ; ?z = {}
= agt

So the hypothesis is clearly entailed. For the ?φ case:

T (?φ, {}, {}) =x⇐ {} ; ?R(φ, x) ; ?x = {}
= ?R(φ, {})
= ?φ
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So the hypothesis is clearly entailed. For the ∃z case:

T (∃z, {}, {}) =x⇐ {} ; ∃z ; ?x = {}
=∃z

So the hypothesis is clearly entailed. The inductive cases are then straightfor-
ward, by choosing x = {} uniformly whenever ∃x is encountered in the translated
path.

Theorem 16. For any epistemic path π:

D ∪DobsK |= PKnows0(π, φ, E1(s))→ PKnows0(π, φ, s)

Proof. Expanding the macros, we have:(
∀s′′ : KDo0(π, do({}, s), s′′)→ φ[s′′]

)
→

(
∀s′ : KDo0(π, s, s′)→ φ[s′]

)
Using equation 14 on the LHS gives:(
∀s′′ : ∃c′, s′ :

(
c′ 6= {} ∧ s′′ = do(c′, s′) ∨ c′ = {} ∧ s′′ = s′

)
∧KDo0(T (π, {}, c′), s, s′)→ φ[s′′]

)
→

(
∀s′ : KDo0(π, s, s′)→ φ[s′]

)
We can weaken the antecedent by dropping the do(c′, s′) case; if the implication

holds with this weaker antecedent then it must hold in its stronger form above. We
obtain:(
∀s′′ : ∃c′, s′ : s′′ = s′ ∧ c′ = {} ∧KDo0(T (π, {}, c′), s, s′)→ φ[s′′]

)
→(

∀s′ : KDo0(π, s, s′)→ φ[s′]
)

Simplifying away the variables s′′ and c′ gives:(
∀s′ : KDo0(T (π, {}, {}), s, s′)→ φ[s′]

)
→

(
∀s′ : KDo0(π, s, s′)→ φ[s′]

)
This implication is a trivial consequence of lemma 13, so the theorem holds.

Theorem 17. Given a basic action theory D and a uniform formula φ:

D ∪DobsK |= PKnows(π, φ, s) ≡ R(PKnows(π, φ, s))

Proof. By induction on situation terms and the natural numbers. In the base case
of S0 we have:

R(PKnows(π, φ, S0)) def= P(PKnows0(π, φ), Empty)[S0]
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The key part of this proof is to demonstrate that for any n:

Pn(PKnows0(π, φ), Empty)[S0] ≡ PKnows0(π, φ, En(S0))

Begin with n = 1, and we have:

P1(PKnows0(π, φ), Empty)[S0] ≡
PKnows0(π, φ, S0) ∧ ∀c : Empty(c)→ PKnows(π, φ, do(c, S0))

By the definition of Empty, we need only consider c = {} and this is equivalent
to:

PKnows0(π, φ, S0) ∧PKnows(π, φ, do({}, S0))

≡ PKnows0(π, φ, S0) ∧PKnows0(π, φ, E1(S0))

By Theorem 16 this is equivalent to PKnows0(π, φ, E1(S0)). A similar construc-
tion will produce the general case for Pn and En. Since P(PKnows0(π, φ), Empty)
is equivalent to Pn(PKnows0(π, φ), Empty) for all n, it is also equivalent to the
definition of PKnows and the regression rule is an equivalence as required.

In the do(c, s) case, we can repeat the above reasoning to demonstrate that the
persistence condition accounts for all empty actions inserted after c. Pushing the
application of En past c, we obtain:

PKnows(π, φ, do(c, s)) ≡
∧
n∈N
P(PKnows0(π, φ), Empty)[do(c, En(s))]

Applying the regression rule for PKnows0 to handle c, we obtain:

PKnows(π, φ, do(c, s)) ≡
∧
n∈N
R(P(PKnows0(π, φ), Empty), c)[En(s)]

Finally, we need the following property of Z(PKnows0(π, φ, s)), which is a direct
consequence of the definition of PKnows :∧

n∈N
PKnows0(π, φ, En(s)) ≡ PKnows(π, φ, s) ≡ Z(PKnows0(π, φ, s))

From Theorem 16 and the definition of R(PKnows0(π, φ, s)), the expression
generated by R(P(PKnows0(π, φ), Empty), c) will be in the form of a finite con-
junction of PKnows0 statements, so we can apply Z to remove the infinite con-
junction by capturing it within PKnows from the inductive hypothesis:

PKnows(π, φ, do(c, s))) ≡ Z(R(P(PKnows0(π, φ), Empty), c)[s])

This is the theorem as required.
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Theorem 18. Let Dsync be a synchronous basic action theory, then:

Dsync ∪ DobsK |= ∀s : PKnows(π, φ, s) ≡ PKnows0(π, φ, s)

Proof. It suffices to show that:

Dsync ∪ DobsK |= PKnows0(π, φ, s) → PKnows0(π, φ, E1(s))

Then by Theorem 16 we have that PKnows0(π, φ, s) is enough to establish
PKnows0(π, φ, En(s)) for any n, which establishes the infinite conjunction in the
definition of PKnows(π, φ, s) as required. Regressing PKnows0(π, φ, E1(s)):

R(PKnows0(π, φ, do({}, s))) ⇒ ∀c : PKnows0(T (π, {}, c),R(φ, c), s)

T (π, {}, c) will have the following form:

T (π, {}, c) ⇒ x⇐ {} ; Ta(π, x) ; ?x = c

For x to take on a new value while traversing this path, it will have to cross one
of the regressed agt steps in Ta(π, x), which have the following form:

z ⇐ Obs(agt, x) ; agt ; ∃x ; ?Legal(x) ∨ x = {} ; ?Obs(agt, x) = z

Entering this path with x set to {} will bind z to {}. x can then take on any new
value that is legal and has Obs(agt, x) = z = {}. But the domain is synchronous, so
by definition there are no such legal actions, and x therefore remains set to {} along
the entire path.

For any value of c other than {}, there will be no situations reachable by this
regressed path and PKnows0 will be vacuously true. We can thus simplify away
the quantification over c to get:

PKnows0(T (π, {}, {}),R(φ, {}), s)

Since x is aways bound to {}, the tests in the regressed agt steps in Ta(π, x) are
always satisfied. Likewise, the regressed ?φ steps in Ta(π, x) always have the form
?R(φ, x). Since R(φ, {}) is always equivalent to φ, we conclude that in synchronous
domains the path T (π, {}, {}) is precisely equivalent the path π. This gives us the
equivalence between PKnows and PKnows0 as required.

Lemma 4. For any agt and φ:

D ∪DobsK |= PKnows(agt, φ, S0) ≡ PKnows0(agt,P(φ,LbU(agt)), S0)

Proof. Recall the regression rule for PKnows at S0:

PKnows(agt, φ, S0) ≡ P(PKnows0(agt, φ), Empty)[S0]

Begin by considering the sequence of calculations required to calculate the regression
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of P1(PKnows0(agt, φ)). First, we perform some simplification on T (agt, {}, c′):

T (agt, {}, c′) = x⇐ {} ; z ⇐ Obs(agt, x) ; agt ;
∃x ; ?Legal(x) ∨ x = {} ; ?Obs(agt, x) = z ; ?x = c′

= z ⇐ Obs(agt, {}) ; agt ; ?Legal(c′) ∨ c′ = {} ; ?Obs(agt, c′) = z

= agt ; ?Obs(agt, c′) = {} ∧
(
Legal(c′) ∨ c′ = {}

)
= agt ; ?

(
LbU(agt, c′) ∨ c′ = {}

)
Now we can use this in the calculation of P1(PKnows0(agt, φ)), recalling the sim-
plifications used in Theorem 17:

P1(PKnows0(agt, φ))[S0] ≡ R(PKnows0(agt, φ, do({}, S0)))
≡ ∀c′ : PKnows0(T (agt, {}, c′),R(φ, c′), S0)
≡ ∀c′ : PKnows0(agt ; ?

(
LbU(agt, c′) ∨ c′ = {}

)
,R(φ, c′), S0)

≡ PKnows0(agt,∀c′ :
(
LbU(agt, c′) ∨ c′ = {}

)
→ R(φ, c′), S0)

≡ PKnows0(agt, φ ∧ ∀c′ : LbU(agt, c′)→ R(φ, c′), S0)

≡ PKnows0(agt,P1(φ,LbU(agt)), S0)

Using the same construction, we can show that in general:

Pn(PKnows0(agt, φ))[S0] ≡ PKnows0(agt,P1(Pn−1(φ,LbU(agt)), LbU(agt)))
≡ PKnows0(agt,Pn(φ,LbU(agt)))[S0]

Clearly the fixpoint calculation in the regression of PKnows at S0 is the same
as the fixpoint calculation used to find P(φ,LbU(agt)). Therefore, we have the
required:

PKnows(agt, φ, S0) ≡ PKnows0(agt,P(φ,LbU(agt)), S0)

Lemma 5. For any agt, φ, c and s:

PKnows(agt, φ, do(c, s)) ≡ ∃z : Obs(agt, c, s) = z

∧ [z = {} → PKnows(agt,P(φ,LbU(agt)), s)][
z 6= {} → PKnows(agt,∀c′ :

(
Legal(c′) ∧Obs(agt, c′) = z

)
→ R(P(φ,LbU(agt)), c), s)]

Proof. Repeating the calculations from Lemma 4 on P(PKnows0(agt, φ))[do(c, s)],
and pushing the application of En past the actions c, we obtain the following:

PKnows(agt, φ, do(c, s)) ≡
∧
n∈N

PKnows0(agt,P(φ,LbU(agt)), do(c, En(s)))
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Regressing the RHS over the actions c, we obtain:

PKnows(agt, φ, do(c, s))

≡ ∀c′ :
∧
n∈N

PKnows0(T (agt, c, c′),R(P(φ,LbU(agt)), c′), En(s))

≡ ∀c′ : PKnows(T (agt, c, c′),R(P(φ,LbU(agt)), c′), s)

Now, let us expand and re-arrange T (agt, c, c′):

T (agt, c, c′) = x⇐ c ; z ⇐ Obs(agt, x) ; agt ;
∃x ; ?Legal(x) ∨ x = {} ; ?Obs(agt, x) = z ; ?x = c′

= z ⇐ Obs(agt, c) ; agt ; ?Legal(c′) ∨ c′ = {} ; ?Obs(agt, c′) = z

= z ⇐ Obs(agt, c) ;(
z = {} ; agt ; ?Legal(c′) ∨ c′ = {} ; ?Obs(agt, c′) = {}

)
∪
(
z 6= {} ; agt ; ?Legal(c′) ∨ c′ = {} ; ?Obs(agt, c′) = z

)
= z ⇐ Obs(agt, c) ;

(
z = {} ; agt ; ?c′ = {}

)
∪
(
z = {} ; agt ; ?LbU(agt, c′)

)
∪
(
z 6= {} ; agt ; ?Legal(c′) ∧Obs(agt, c′) = z

)
Substituting this back into the RHS, we can bring the leading tests outside the

macro and split the ∪ into a conjunction to give:

PKnows(agt, φ, do(c, s)) ≡ ∀c′ : ∃z : Obs(agt, c, s) = z

∧ PKnows((?z = {}; agt) ,R(P(φ,LbU(agt)), {}), s)
∧ PKnows(

(
?z = {}; agt; ?LbU(agt, c′)

)
,R(P(φ,LbU(agt)), c′), s)

∧PKnows(
(
?z 6= {}; agt; ?Legal(c′) ∧Obs(agt, c′) = z

)
,R(P(φ,LbU(agt)), c′), s)

Extracting the remaining tests from these paths, removing regression over the
empty action, and pushing the quantification over c′ into its narrowest scope:

PKnows(agt, φ, do(c, s)) ≡ ∃z : Obs(agt, c, s) = z

∧ [z = {} → PKnows(agt,P(φ,LbU(agt)), s)]
∧
[
z = {} → PKnows(agt,∀c′ : LbU(agt, c′) → R(P(φ,LbU(agt)), c′), s)

]
∧
[
z 6= {} → PKnows(agt,∀c′ :

(
Legal(c′) ∧Obs(agt, c′) = z

)
→ R(P(φ,LbU(agt)), c′), s)

]
To complete the proof, we need the following property of the persistence condi-

tion, which follows directly from its definition:

D |= (∀c : α[c, s]→ R(P(φ, α), c)[s]) ≡ P(φ, α)[s]

Using this we see that the two z = {} clauses are equivalent, and we can drop
the more complicated one to get the theorem as required.
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Lemma 6. For any agt, φ and s:

D ∪DobsK |= Knows(agt, φ, s) ≡ Knows(agt,P(φ,LbU(agt)), s)

Proof. By induction on situations, using the regression rules for knowledge, and the
following straightforward properties of the persistence condition:

∀s′ : P(φ, α)[s] ∧ s ≤α s′ → P(φ, α)[s′]

P(P(φ, α), α)[s] ≡ P(φ, α)[s]

For s = S0 the regression rule in equation (7.11) gives us the following:

Knows(agt, φ, S0) ≡Knows0(agt,P(φ,LbU(agt)), S0)
≡∀s′ : K0(agt, s′, S0) → P(φ,LbU(agt))[s′]

Which, by the above properties of P, yields:

Knows(agt, φ, S0) ≡ ∀s′, s′′ : K0(agt, s′, S0)∧s′ ≤LbU(agt) s
′′ → P(φ,LbU(agt))[s′′]

This matches the form of the Knows macro, and can be restructured to give
the required:

Knows(agt, φ, S0) ≡ Knows(agt,P(φ,LbU(agt)), S0)

For the do(c, s) the inductive hypothesis gives us:

Knows(agt, φ, s) ≡ Knows(agt,P(φ,LbU(agt)), s)

We have two sub-cases to consider. If Obs(agt, c, s) = {} then the regression rule
in equation (7.10) gives us:

Knows(agt, φ, do(c, s)) ≡ Knows(agt, φ, s)

Knows(agt,P(φ,LbU(agt)), do(c, s)) ≡ Knows(agt,P(φ,LbU(agt)), s)

These can be directly equated using the inductive hypothesis, so the theorem
holds in this case. Alternately, if Obs(agt, c, s) 6= {} then the regression rule gives:

Knows(agt, φ, do(c, s)) ≡ ∃o : Obs(agt, c, s) = o∧
Knows(agt,∀c′ : Legal(c′) ∧Obs(agt, c′) = o → R(P(φ,LbU(agt)), c′), s)

Knows(agt,P(φ,LbU(agt)), do(c, s)) ≡ ∃o : Obs(agt, c, s) = o∧
Knows(agt,∀c′ : Legal(c′) ∧Obs(agt, c′) = o

→ R(P(P(φ,LbU(agt)), LbU(agt)), c′), s)
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Simplifying the second equation using the properties of P gives:

Knows(agt,P(φ,LbU(agt)), do(c, s)) ≡ ∃o : Obs(agt, c, s) = o∧
Knows(agt,∀c′ : Legal(c′) ∧Obs(agt, c′) = o → R(P(φ,LbU(agt)), c′), s)

This matches the equivalence for Knows(agt, φ, do(c, s)), as required.
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Appendix B
Available Software Implementations

Three major software implementations have been developed during the course of
this research. They are each made available under the terms of the GNU General
Public License, and are available for download at the author’s website:

http://www.rfk.id.au/research/thesis/

Each software package comes with comprehensive instructions on running the
code and reproducing the results found in this thesis. The following is a brief
description of each system.

MIndiGolog v1: This is the MIndiGolog implementation described in Chapter
3, which performs online execution planning but is limited to synchronous
domains. This software runs on the Mozart platform version 1.3.2 or later. Its
key feature is the use of Mozart’s parallel search functionality to distribute the
execution planning workload.

MIndiGolog v2: This is the MIndiGolog implementation described in Chapter 5,
which produces joint executions as the output of its planning process, but is
limited to only offline planning. It is able to render a graphical representation
of joint executions in the DOT graph description language, from which the
diagrams in Chapter 5 were generated. This version also runs on the Mozart
platform version 1.3.2 or later.

PKnows: This is our preliminary implementation of an epistemic reasoning system
using the techniques developed in Chapters 7 and 8. It is implemented using
SWI-Prolog to perform symbolic manipulation, calling a modified version of
the PDL prover from the Tableaux Workbench suite [2] to handle the resulting
modal logic queries.
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Appendix C
Axioms for the “Cooking Agents”

This appendix provides the axioms for the “cooking agents” example domain used
in Chapters 3 and 5. While the different chapters use slightly different variants of
the domain, the major details are unchanged between chapters.

Synchronous, with Time and Natural Actions

In this domain there are three agents named Jon, Jim and Joe:

∀agt : agt = Jim ∨ agt = Jon ∨ agt = Joe

There are various types of ingredient and utensil, and types are represented
explicitly as terms such as Lettuce and Bowl. Individual objects of these types are
named e.g. Lettuce1, Bowl2: We have a rigid predicate ObjIsType(obj, typ) that
relates these two sorts of object. It is defined as the completion of the following
clauses:

IsType(obj,Bowl) → obj = Bowl1 ∨ obj = Bowl2 ∨ Bowl3
IsType(obj,Board) → obj = Board1 ∨ obj = Board2

IsType(obj, Egg) → Egg1
IsType(obj, Tomato) → obj = Tomato1 ∨ obj = Tomato2 ∨ obj = Tomato3

IsType(obj, Lettuce) → obj = Lettuce1 ∨ obj = Lettuce2
IsType(obj, Carrot) → obj = Carrot1 ∨ obj = Carrot2 ∨ obj = Carrot3

IsType(obj, Cheese) → obj = Cheese1 ∨ obj = Cheese2

Different object super-types are identified using:

IsContainer(obj) ≡ IsType(obj,Bowl) ∨ IsType(obj,Board)
IsIngredient(obj) ≡ IsType(obj, Egg) ∨ IsType(obj, Lettuce) ∨ . . .

The available actions are release, acquire, placeIn, and transer, along with
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beginTask and endTask. There are two tasks: chop(cont) chops the contents of a
container, and mix(cont, t) mixes the contents of a container for the given time.

We have the following fluents and successor state axioms. An ingredient is used
if the agent places it in some container:

Used(obj, do(c#t, s)) ≡ IsIngredient(obj)
∧ (∃agt, cnt : placeIn(agt, obj, cnt) ∈ c) ∨ Used(obj, s)

An agent has an object after he acquires it, and ceases to have it when it is
released or becomes used:

HasObject(agt, obj, do(c#t, s)) ≡ acquire(agt, obj) ∈ c
∨HasObject(agt, obj, s) ∧ ¬ (release(agt, obj) ∈ c

∨IsIngredient(obj) ∧ ∃cnt : placeIn(agt, obj, cnt) ∈ c)

The contents of a container is simply the set of things that have been placed into
it. For this simple example, we do not represent the state of those ingredients, e.g.
mixed or chopped:

Contents(obj, cnts, do(c#t, s)) ≡ (∃cntsn, cntso : NewConts(obj, cntsn, c, s)
∧Contents(obj, cntso, s) ∧ cnts = cntsn ∪ cntso)

∨ (cnts = {} ∧ LostContents(obj, c))
∨ (Contents(obj, cnts, s) ∧

¬(∃cntsn, cntso : NewConts(obj, cntsn, c, s) ∨ LostContents(obj, c))

NewConts(obj, cnts, c, s) ≡ ∃agt, igr : placeIn(agt, igr, obj) ∈ c ∧ cnts = {igr}
∨ ∃agt, obj′ : transfer(agt, obj′, obj) ∈ c ∧ Contents(obj′, cbts, s)

LostConts(obj, c) ≡ ∃agt, obj′ : transfer(agt, obj, obj′) ∈ c

An agent can be doing a long-running task, with time tr remaining until com-
pletion. The rigid function duration(tsk) gives the running time of a task:

DoingTask(agt, tsk, tr, do(c#t, s)) ≡
beginTask(agt, tsk) ∈ c ∧ tr = duration(tsk)

∨ ∃t′r : DoingTask(agt, tsk, t′r, s) ∧ tr = t′r − t ∧ endTask(agt, tsk) 6∈ c

The possibility axioms for individual actions are:

Poss(acquire(agt, obj)#t, s) ≡ ¬Used(obj) ∧ ¬∃agt′ : HasObject(agt, obj, s)

Poss(release(agt, obj)#t, s) ≡ HasObject(agt, obj, s)

Poss(placeIn(agt, obj, cnt)#t, s) ≡ HasObject(agt, obj, s)∧HasObject(agt, cnt, s)
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Poss(transfer(agt, cnt, cont′)#t, s) ≡
HasObject(agt, cnt, s) ∧HasObject(agt, cnt′, s)

Poss(beginTask(agt, tsk)#t, s) ≡
∃cnt, t : tsk = mix(cnt, t) ∧HasObject(agt, cnt, s) ∧ObjIsType(cnt,Bowl)
∨ ∃cnt : tsk = chop(cnt) ∧HasObject(agt, cnt, s) ∧ObjIsType(cnt,Board)

Poss(endTask(agt, tsk)#t, s) ≡ ∃tr : DoingTask(agt, tsk, tr, s) ∧ t = start(s) + tr

Concurrent actions are possible if they are all individually possible and no pair
of action is in conflict:

Poss(c#t, s) ≡ ∀a, a′ ∈ c : Poss(a#t, s) ∧ Poss(a′#t, s) ∧ ¬Conflicts(a, a′, s)

Actions conflict if they are performed by the same agent, or are attempts to
acquire the same resource:

Conflicts(a, a′, s) ≡ actor(a) = actor(a′)
∨ ∃agt, agt′, obj : a = acquire(agt, obj) ∧ a′ = acquire(agt′, obj)

Initially all containers are empty, no-one has any objects, and all ingredients
apart from possibly the egg are not used:

∀cnt : IsContainer(cnt) → Contents(cnt, {}, S0)
∀agt, obj : ¬HasObject(agt, obj, S0)

∀igr : ObjIsType(igr, Egg) ∨ ¬Used(igr, S0)

These axioms suffice for the example domain used in Chapter 3

Asynchronous, without Time or Natural Actions

For Chapter 5 we drop the temporal component, and collapse the tasks mix and
chop into primitive actions:

Poss(mix(agt, cnt), s) ≡ HasObject(agt, cnt, s) ∧ObjIsType(cnt,Bowl)

Poss(chop(agt, cnt), s) ≡ HasObject(agt, cnt, s) ∧ObjIsType(cnt,Board)

We introduce a sensing action checkFor(agt, typ) which determines whether all
objects of that type are unused:

Poss(checkFor(agt, typ), s) ≡ >
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SR(checkFor(agt, typ), s) = r ≡
r = ”T” ∧ ∀obj : ObjIsType(obj, typ)→ ¬Used(obj, s)
∨ r = ”F” ∧ ∃obj : ObjIsType(obj, typ) ∧ Used(obj, s)

We adopt the CanObs/CanSense axioms for observability and make all actions
private except acquire and release:

CanObs(agt, a, s) ≡ actor(a) = agt ∨ ∃agt′, obj : a = acquire(agt′, obj)
∨ ∃agt′, obj : a = release(agt′, obj)

CanSense(agt, a, s) ≡ actor(a) = agt

Finally, we identify independent actions as those that deal with different objects,
which much be axiomatised by enumerating the each possible case. We will not
present such an enumeration here.

These axioms suffice for the example domain in Chapter 5.
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